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This dissertation analyzes three important problems in purchasing operations. Below, we

briefly summarize each problem:

In the first chapter, we focus on designing optimal descending mechanisms for constrained

procurement. Descending mechanisms for procurement (or, ascending mechanisms for sell-

ing) have been well-recognized for their simplicity from the viewpoint of bidders – they

require less bidder sophistication as compared to sealed-bid mechanisms. We consider pro-

curement under each of two types of constraints: (1) Individual/Group Capacities: limita-

tions on the amounts that can be sourced from individual and/or subsets of suppliers, and

(2) Business Rules: lower and upper bounds on the number of suppliers to source from, and

on the amount that can be sourced from any single supplier. We analyze two procurement

problems, one that incorporates individual/group capacities and another that incorporates

business rules. In each problem, we consider a buyer who wants to procure a fixed quantity

of a product from a set of suppliers, where each supplier is endowed with a privately-known

constant marginal cost. The buyer’s objective is to minimize her total expected procure-

ment cost. For both problems, we present descending auction mechanisms that are optimal

mechanisms. We then show that these two problems belong to a larger class of mechanism

design problems with constraints specified by polymatroids, for which we prove that optimal

mechanisms can be implemented as descending mechanisms.
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In the second chapter, we propose a modification of the well-known Vickrey-Clarke-Groves

(VCG) mechanism and investigate its optimality in the context of procurement. It is well-

known that the VCG mechanism is optimal for a buyer procuring one unit from a set of

symmetric suppliers. For procuring a unit from asymmetric suppliers, Myerson’s optimal

mechanism can be interpreted as a transformation of the VCG mechanism – both in terms

of its allocation and payment – using the virtual cost function. For a more general setting in

which multiple units need to be procured from asymmetric suppliers under an arbitrary set

of feasibility constraints, we analyze the same transformation of the VCG mechanism. We

show that this mechanism is optimal if the feasible region is a polymatroid. We also present

an example of a non-polymatroidal feasible region for which this mechanism is sub-optimal.

The third chapter considers governmental procurement of food crops from farmers in de-

veloping countries and examines the impact of several operational features on the selling

behavior of the farmers. Among the various governmental schemes that support agriculture,

support prices have been adopted by many developing countries. A support price for an

agricultural crop is a guaranteed price at which a governmental entity agrees to purchase

that crop from farmers. Despite this surety, the surprising practice of “distressed” selling has

been widely observed in practice: Farmers sell a significant portion of their crops to outside

agents at prices much lower than the support price. We build a tractable stochastic dynamic

programming model that captures the salient features of the ground realities – limited as

well as uncertain procurement capacity, high holding costs for the farmers, and lack of af-

fordable credit – that conspire to induce distressed selling and, consequently, a significant

loss of welfare of the farmers. Using real data on procurement under a support-price pro-

gram, we establish the accuracy of our model’s prediction on the volume of distressed sales.

Finally, we show how our model and its solution can serve as a simple and useful tool for

policy-makers to assess the relative impact of the improvements in the main determinants

of distressed sales.
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CHAPTER 1

INTRODUCTION

We begin with describing the problems studied in Chapters 2–4, discuss the relevant literature

and summarize our contributions.

In Chapter 2, we study the design of optimal descending mechanisms for procurement un-

der several practical operational constraints. It is commonly acknowledged that, in addition

to cost, operational considerations play an important role in procurement; see e.g., Hohner

et al. (2003), Mochari (2004), Elmaghraby (2007), and Wyld (2011). Typical examples of

constrained procurement include:

1. Individual/Group Capacities: Suppliers typically have finite production capacities that

limit the number of units they can supply to the buyer. In addition, buyers often impose

upper bounds on the total amounts procured from different subsets of suppliers, to

avoid overdependence on the suppliers from a specific subset, or to ensure a sufficient

amount of supplier diversity. For instance, a recent Financial Times report (Marsh

2011) names several companies in the engineering sector that have built networks

of suppliers in multiple countries to insulate themselves from disruptive events like

earthquakes. We provide two more real-world instances of the use of such constraints in

procurement: (a) AT&T’s global supplier diversity program (AT&T 2016) targets up to

15% of their total spend from minority businesses and up to 1.5% from service-disabled-

veteran businesses. (b) The Hackett Group – an Atlanta-based business advisory firm –

recommends that companies give favored suppliers 80 percent of their business and

backup vendors 20 percent (Mochari 2004).

2. Business Rules : For strategic reasons, buying firms often include the following con-

straints while sourcing:

◦ A lower bound on the number of suppliers to source from and an upper bound

on the quantity that can be sourced from any selected supplier. This avoids

dependence on too small a supply base.

1
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◦ An upper bound on the number of suppliers to source from and a lower bound

on the quantity that can be sourced from any selected supplier. This avoids the

high administrative burden of working with too large a supply base.

Hohner et al. (2003) describe the use of these business rules in the procurement of raw

material at Mars, Inc., a producer of many top brands of confectionery, pet food, and

rice.

We study two procurement problems – one that has individual/group capacities and

another that has business rules as constraints. In both problems, there is a buyer who

wants to procure a fixed, aggregate quantity of a product. There are many suppliers, whose

production costs are linear functions of production quantity. The unit cost of each supplier

is private information, while the distributions of the costs of the suppliers are independent

and common knowledge. Examples of papers that make all of these assumptions for all or

a significant part of their analysis are Chaturvedi et al. (2013), Wan et al. (2012), Wan and

Beil (2009), and Kostamis et al. (2009). The objective of the buyer is to minimize her total

expected procurement cost. For both problems, we design descending mechanisms that are

optimal. Our goal of designing descending mechanisms is motivated by the observation that

such mechanisms require much less bidder sophistication (as elaborated below); see, e.g.,

Ausubel (2004), Ausubel and Cramton (2006) and Duenyas et al. (2013). In each of these

papers, the authors have advocated the use of descending mechanisms in place of sealed-bid

mechanisms.

In proving the optimality of the descending mechanisms for the above two procurement

problems (namely, Individual/Group Capacities and Business Rules), we analyze a larger

class of mechanism design problems that incorporate constraints specified by a polymatroid

and provide a descending mechanism that is optimal for a general problem in this class.

Finally, we also consider a mechanism design problem for procurement under concave pro-

duction costs and constraints that are specified by a symmetric polymatroid, and present a

descending mechanism that is optimal for this problem.

The descending (auctions) mechanisms proposed here consist of buyer-controlled, contin-

uously decreasing price meters, one for each supplier. Each meter is initialized at a certain

unit price and is visible only to the supplier to whom it is assigned. This initial price could

be different for different price meters. A supplier can leave the auction at any time by press-

ing an ‘off’ button. Until this event, the buyer can award business to the supplier at any

time instant, for a unit price equal to the prevailing value of his price meter. The supplier



www.manaraa.com

3

could be awarded business at multiple time instants, before his exit. Once he presses his off

button, the supplier is not allowed to participate further in the auction and does not receive

any additional business. Thus, the only decision for a supplier is to choose when to exit the

auction (i.e., press the off button).

Trivial Identification of the Dominant Strategy: An appealing feature of the above auction

is that it is a dominant strategy for each supplier to exit the auction when his price meter hits

his privately-known unit cost. This is trivial to see: On the one hand, staying in the auction

after the meter has reached his unit cost can only reduce the supplier’s profit, because any

subsequent awards that are made to him will be at prices that are below his unit cost. On the

other hand, by leaving before the meter hits his unit cost, the supplier foregoes the potential

to receive additional profitable awards. An additional attractive feature in practice is that

the buyer is able to control the duration of the auction, by controlling the speeds of the price

meters.

Our work joins the growing stream of research in the Operations Management area on

procurement, using analytical or behavioral methods from economics. We refer the reader

to the survey by Elmaghraby (2007), and the tutorials by Beil (2010) and Katok (2011).

In Chapter 3, we investigate the optimality of a modified VCG mechanism. The theory

of mechanism design in procurement, to a large extent, is concerned with the design of two

classes of mechanisms: (1) Optimal mechanisms are the ones that maximize the expected

surplus of the buyer. (2) Efficient mechanisms are those that maximize the expected social

surplus, which includes both the buyer’s expected surplus and the total expected surplus of

the suppliers. Consider the simple setting of a buyer who wants to procure one unit of a

product from a set of symmetric suppliers, each with a privately-known cost of production.

It is well known that the VCG mechanism is both efficient and optimal in this setting; see e.g.

Krishna (2002). In this chapter, we focus on the following general, constrained procurement

setting:

A buyer wants to procure multiple units of a product from either a set N = {1, 2, . . . , N}
of asymmetric suppliers, each with a privately-known unit-cost, or an outside option with

unit-cost R. We denote the outside option as supplier N + 1. Each supplier i ∈ N has a

privately-known unit-cost ci, which is a realization of a random variable with a continuous

cumulative distribution function Fi and a continuous probability density function fi on the

support [ci, ci]. The distributions of the costs of the suppliers are independent and common

knowledge. The allocations made to the suppliers are subject to a set, denoted by FEAS, of

feasibility constraints (see Bichler et al. (2006) for several practically important feasibility

constraints). The goal is to find an optimal mechanism for the buyer.
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Under this procurement setting, we define a transformation of the VCG mechanism

which we refer to as the “virtual” VCG mechanism (VVCG). VVCG-like mechanisms have

precedence in the literature. For example, Chapter 3 of Hartline (2013) considers a forward

setting in which a seller sells multiple units of a product to a set of N bidders with a

restriction that each bidder receives an allocation of either 0 or 1 unit. For this setting, the

author proposes an optimal sealed-bid mechanism, which is similar to the VVCG mechanism

in spirit. Another example is Duenyas et al. (2013) who consider a buyer procuring an

endogenously determined quantity of a product from a set of N suppliers. For this setting,

the authors propose an optimal descending mechanism in which the use of virtual cost

functions in designing the allocations and payments given to the suppliers is similar to that

used in the VVCG mechanism.

VVCG is a natural extension of the VCG mechanism and uses virtual cost functions that

play a prominent role in Myerson (1981). We know that VCG is an efficient mechanism.

We also know from Duenyas et al. (2013) and Hartline (2013) that VVCG is optimal for

the specific settings they study. Given this, it is interesting to understand if VVCG is

always an optimal mechanism. This chapter provides a definitive answer to this question by

demonstrating VVCG’s optimality for a large variety of settings (i.e., polymatroid feasible

allocation sets) and by showing that VVCG fails to be optimal in other settings.

In Chapter 4, we study the procurement of food crops in developing countries. In most

developing economies, the agricultural sector contributes a significant share to the GDP,

e.g., about 20% in Bangladesh, 12% in Philippines, 18% in India, 15% in Indonesia, and

20% in Vietnam (Food and Agriculture Organization of the UN 2015, World Bank 2015).

A significant percentage of the poor in developing countries live in rural areas and depend

on agriculture for their livelihood. Among these, perhaps the most vulnerable group is that

of the small and marginal farmers. With limited land holdings, these farmers continually

suffer from rising production costs, market-price fluctuations of their crops, lack of access

to affordable credit, and a poor logistics infrastructure to transport their crops to urban

markets. Given the central role these farmers play in ensuring food security, it is no surprise

that policy makers in developing countries offer a variety of schemes that are aimed at

improving their welfare.

One such governmental intervention is through support prices. A support price for an

agricultural crop is a guaranteed and attractive price at which the government agrees to

directly purchase that crop from farmers. Support prices for major crops have been adopted

by many developing countries, including Bangladesh, Brazil, China, India, Pakistan, Philip-

pines, Thailand, and Turkey. The food grains procured under a support-price program are
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then made available to the poor at an affordable price. Thus, the government’s motivation

behind offering a support price for a crop is threefold: incentivizing production of the crop,

protecting the farmers against lower market prices, and feeding the economically-weak seg-

ment of the population. The following quote from the Ministry of Finance, India (2010)

succinctly states these goals:

[A support-price program] for agricultural produce seeks to ensure remunerative prices to
growers for their produce with a view to encourage higher investment and production as
well as safeguarding the interests of consumers by making available supplies at reasonable
prices. The price policy also seeks to evolve a balanced and integrated price structure in
the perspective of the overall needs of the economy.

Despite the good intentions behind price support, a variety of operational challenges in the

procurement (by the government) under this program lead to farmers often being forced to

sell their produce to outside agents at prices that are much lower than the support price. We

now examine the reasons behind this practice, which is commonly referred to as distressed

selling1.

The operational details of governmental procurement under agricultural price support

naturally differ across countries. A massive scale of procurement and a better-organized

procurement process – relative to other developing countries – make India a good case for

understanding distressed selling.

The Indian government offers support prices for most major crops, including wheat, rice,

and lentils. The government implements this for a crop by announcing a support price at

the start of its growing season and subsequently opening procurement centers across the

country. Each Government Procurement Center (GPC) covers a specific geographical area;

all the farmers in this area are assigned to the corresponding GPC. After harvest, the farmers

transport their produce to their GPC to complete the sales and receive full payment.

A major obstacle in this process, however, is the limited as well as the uncertain capacity

at a GPC. Even with a large number of GPCs across the country, the massive population

of the farmers implies that multiple villages are assigned to the same GPC. Although the

government guarantees procurement from all the farmers who are willing to sell their harvest

at the GPC, the processing rate of the farmers’ transactions at the GPC is slow, as it involves,

among other steps, grading, sorting, and weighing of the grains (The Indian Express 2014,

The Hindu 2014a). Thus, the government’s procurement capacity over the selling season is

limited. There is capacity uncertainty too; the following examples are illustrative: (i) The

1See https://www.youtube.com/watch?v=U2lr5rBTpaU for a 1-minute news clip on distressed selling.
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grains procured by the GPC are transported to central warehouses and, from there, to

fair-price shops across the country, where the economically-backward population can access

them. If the outflow from a central warehouse is hampered, say due to inclement weather,

then the inflow to this warehouse from its associated GPCs is reduced, ultimately slowing

down procurement activities at the GPCs. (ii) A stock-out of the bags – that are used to

store the procured grains – at the GPC can suddenly close down procurement operations

(Economic and Political Weekly 2011).

While waiting to sell his produce at the GPC, the farmer is responsible for the temporary

holding of his grains near the GPC; the storage infrastructure, however, is both inadequate

and expensive in the commercial centers where the GPCs are typically located (The Hindu

2014b). Worsening this situation is the fact that farmers are poor and debt-ridden from

the loans to finance their production costs, often at high interest rates from opportunistic

lenders (Sahu et al. 2004). Thus, farmers are in an urgent need of cash during the selling

season and waiting to sell their crops at the GPC is costly. Opportunistic market agents (or

outside agents) exploit this situation and buy from the farmers at prices much lower than the

support price (The Economic Times 2015, The Financial Express 2015, The Times of India

2013, Business Standard 2012a,b), resulting in distressed selling. To illustrate the magnitude

of this phenomenon, Table 1.1 shows the percentage share of the government’s procurement

in some major wheat-producing states in India in the 2011–12 and 2012–13 selling seasons

(Directorate of Economics and Statistics 2013, 2014).

The practice of distressed selling has been reported in several other developing countries

as well; e.g., Bangladesh (Mandal 2010), Pakistan (Salman 2011), Tanzania (Knudsen and

Nash 1990), and Ethiopia (Minot and Rashid 2013).
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This chapter is organized as follows: In Sections 2.1 and 2.2, we formally define our two

procurement problems – one that has individual/group capacities and another that has

business rules as constraints, and propose optimal descending mechanisms for both these

problems. In Section 2.3, we construct an optimal descending mechanism for procurement

under polymatroidal feasibility constraints. Section 2.4 presents an extension considering

suppliers with concave production costs. Finally, we conclude our chapter in Section 2.5 and

discuss future research directions.

2.1 Procurement Under Individual/Group Capacities

Our first procurement problem, referred to as M-CGP, is defined as follows: Consider a

buyer and a set N of suppliers, where |N | = N . Each supplier i ∈ N has a private unit

cost ci, which is a realization of a random variable with a continuous cumulative distribution

function Fi and a continuous probability density function fi on the support [ci, c̄i]. There are

M disjoint groups of suppliers, with index sets denoted by Gk ⊆ N , k = 1, 2, . . . , M . Thus,

∪M
k=1Gk ⊆ N and Gk ∩Gk′ = ∅ for k 6= k′. Let M = {1, 2, . . . , M} and G0 = N \∪M

k=1Gk be

the collection of suppliers who do not belong to any group. The buyer wants to procure a

fixed quantity Q of a product. The objective of the buyer is to minimize the total expected

procurement cost, subject to the usual incentive compatibility and individual rationality

constraints, and the following constraints:

• (Individual Supplier Capacities) The total amount that can be procured from

Supplier i can be at most his production capacity Γi, i ∈ N .

• (Group Procurement Constraints) The total amount that can be procured from

the suppliers in Group Gk can be at most ηk, k ∈M.

Without loss of generality, we assume that Q, Γi, i ∈ N , and ηk, k ∈M, are positive integers.

It is straightforward to verify that the constraints admit a feasible solution if and only if

Q ≤
∑

i∈G0

Γi +
M∑

k=1

min

{
ηk,

∑
i∈Gk

Γi

}
. (2.1)

Therefore, we will assume this condition throughout our discussion of M-CGP.

Before we formally describe our descending mechanism for this problem, we illustrate it

on a simple numerical example. At the end of this illustration, we also comment on the

connection of our mechanism with that in Ausubel (2004).
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2.1.1 Illustrative Example

Consider a buyer and a set of 4 suppliers. Each supplier has an independent and identically

distributed marginal cost in an interval [c, c̄] with a cumulative distribution function F . The

buyer wants to procure Q = 10 units. For expositional convenience, we refer to the first

supplier as Supplier A, the second as Supplier X, the third as Supplier B, and the fourth

as Supplier Y. The individual production capacities of these suppliers are as follows: ΓA =

4, ΓX = 2, ΓB = 5, and ΓY = 4. There are two groups of suppliers (thus, M = {1, 2}): G1 =

{A,B} and G2 = {X,Y }. The total amount that can be procured from the suppliers in G1

(resp., G2) is at most η1 = 7 (resp., η2 = 4).

To derive intuition, let us first consider the deterministic case, where the buyer knows

the costs of the suppliers. Without loss of generality, let cY > cB > cA > cX . The optimal

allocation in this case is easy to understand: In order to minimize the total procurement

cost, the buyer awards the maximum feasible amount to Supplier X. This supplier has a

production capacity of 2 units and belongs to Group 2, which has a group capacity of 4 units.

Therefore, Supplier X is awarded 2 units. The next cheapest supplier, i.e., Supplier A, is

now considered. This supplier has a production capacity of 4 units and his group capacity

is 7 units; therefore, he is awarded 4 units. The next cheapest supplier, i.e., Supplier B, has

a production capacity of 5 and belongs to Group 1, which has a group capacity of 7 units.

Since Supplier A, who also belongs to Group 1, has already been awarded 4 units, Supplier

B gets an award of only 3 units. Finally, Supplier Y receives 1 unit. To summarize, Supplier

X receives 2 units, A receives 4 units, B receives 3 units and Y receives 1 unit.

We now return to the case when the buyer does not know the costs of the suppliers.

The allocations made by our descending mechanism are discussed step-by-step below. For

simplicity of illustration, let us assume that the costs of the suppliers (which are unknown to

the buyer) are in the same order as above, i.e., cY > cB > cA > cX . It will turn out that the

final allocations to the suppliers by the mechanism are the same as those in the deterministic

setting discussed above. The descending auction in this example works as follows: There is

a common price meter for all suppliers. Let this meter start at price P (0) = c̄ and decrease

continuously, e.g., following the equation P (t) = c̄ − t. Recall from Chapter 1 that it is a

dominant strategy for each supplier to exit when the price meter hits his unit cost. As a

consequence, the suppliers leave in the order of their unit costs, starting with the supplier

with the highest unit cost.

At time t = 0, the buyer makes the following calculations: (i) the total number of units

needed is 10, (ii) the total residual capacity of the remaining suppliers is 11, and (iii) the
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Figure 2.1. An illustration of our descending mechanism for M-CGP. Shaded circles represent
suppliers who have exited the auction, whereas unshaded circles represent suppliers who
continue to participate. The amounts {·} indicate the incremental allocation given to a
supplier at the corresponding time instant. The total amount allocated to a supplier is the
sum of these incremental allocations.

total residual capacity of the suppliers excluding Supplier A (resp., Supplier B, Supplier X,

Supplier Y) is 9 (resp., 8, 11, 9). If the price meter is reduced and, as a consequence, any one

of the suppliers A, B, or Y leaves, then no feasible allocation among the remaining suppliers

will satisfy the total requirement of the buyer. Therefore, the buyer awards 1 (= 10-9) unit

to Supplier A, 2 (= 10-2) units to Supplier B, and 1 (= 10-9) unit to Supplier Y. Each of

these awards is made at a unit price equal to the current price meter (which is P (0)).

The meter now reduces until exactly one supplier has left the auction (Supplier Y, in

this example). At this time instant, again the buyer does the following calculations: (i) the

total number of additional units needed is 6, (2) the total residual capacity of the remaining

suppliers is 6, (3) the total residual capacity of the remaining suppliers excluding Supplier A

(resp., supplier B, Supplier X) is 5 (resp., 5, 4). Using the same logic as above, the buyer

awards 1 unit to Supplier A, 1 unit to Supplier B, and 2 units to Supplier X; again, each of

these awards is made at a unit price equal to the current price meter.

The meter continues to decrease until exactly one more supplier has left the auction

(Supplier B, in our case). At this time instant, the total number of units needed is 2, the

residual capacity of Supplier A is 2, and the residual capacity of Supplier X is 0. Therefore,

the buyer awards 2 units to Supplier A at a unit price equal to the current price meter. At

this point, the buyer has procured the required amount and, therefore, the auction ends.

Figure 2.1 gives a pictorial representation of the awards made at each of the above

three time instances. To summarize, Supplier Y receives a cumulative allocation of 1 unit, B

receives 3 units, A receives 4 units, and X receives 2 units. The optimality of this mechanism

is formally established in Theorem 1 (Section 2.1.2).
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Connection of Our Descending Mechanism to that in Ausubel (2004): Ausubel (2004) con-

siders a forward setting in which the auctioneer sells multiple (homogeneous) units. Each

bidder has different marginal valuations for different units and is allowed to buy multiple

units. There are no set-based constraints, akin to our group procurement constraints. For

this problem, Ausubel designs an ascending auction that is efficient. Ausubel’s auction, for

the reverse setting, solves M-CGP in the absence of the group procurement constraints for

the special case when the costs of the suppliers are from the same distribution. Thus, our de-

scending mechanism and Ausubel’s auction share certain similarities, e.g., in our descending

mechanism, at any instant of time when a supplier receives an award, the per-unit price paid

to the supplier for this award is equal to the value of his price meter at that time instant.

In Ausubel (2004), this is referred to as “clinching”. Our problem is more general in that

we consider set-based constraints, while Ausubel’s problem is more general in that he allows

for non-constant marginal costs. Finally, we reiterate that our goal is to obtain an optimal

mechanism, whereas the goal in Ausubel (2004) is to obtain an efficient mechanism: An

optimal mechanism maximizes the buyer’s expected surplus, while an efficient mechanism

maximizes the sum of the buyer’s surplus and the total surplus of all the suppliers.

2.1.2 Descending Mechanism

At any time during the auction, we define the following variables: (1) N̂ is the set of suppliers

remaining in the auction, (2) NEED is the number of units that remains to be procured,

(3) RCi is an upper bound on the number of additional units that can be procured from

Supplier i, (4) RCGl is an upper bound on the number of additional units that can be

procured from the suppliers in Group Gl, (5) TRCwSi is the total residual capacity of the

remaining suppliers excluding Supplier i, and (6) ALLOCi is the cumulative award given to

Supplier i.

Define ψi(c) = c + Fi(c)/fi(c) for any i ∈ N and c ∈ [ci, c̄i], and assume that ψi(c) is

strictly increasing in c. Our descending mechanism for problem M-CGP is as follows:

• Step 1: (Supplier-specific Price Meters) At any time t ≥ 0, Supplier i observes a

continuously decreasing price meter Pi(t), defined as follows:

Pi(t) = ψ−1
i

[
min

{
ψi(c̄i), max

j
ψj(c̄j)− rt

}]
, (2.2)

where r is the rate at which the price is reduced and is a parameter chosen by the

buyer. We note a few observations about the expression (2.2) for the price meters:
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(a) The price meter of Supplier i is initialized at Pi(0) = c̄i. (b) When the suppliers

are symmetric, a common price meter suffices. (c) For Supplier i, the meter stays

constant at c̄i until a certain time t̄i (defined by maxj∈N ψj(c̄j) − rt̄i = ψi(c̄i)). After

that time, his price meter follows the equation ψi(Pi(t)) = maxj∈N ψj(c̄j)−rt, which is

independent of i. Thus, for t ≥ maxs t̄s, the price meters decrease such that ψi(Pi(t)) =

ψj(Pj(t)),∀i, j. If the price meter Pi(t) of Supplier i hits the lower bound ci of his

private cost support at any time instant t = t0, then his price meter is assumed to

stay at ci for t ≥ t0. These observations, along with the fact that each supplier i exits

when Pi(t) = ci, imply that the suppliers exit the auction in the decreasing order of

the virtual costs, ψi(ci).

• Step 2: (Initialization) At the start of the auction, the buyer sets the following:

(a) NEED = Q. (b) N̂ = N . (c) For all l ∈ M, RCGl = ηl. (d) For all i ∈ N̂ ,

P̂i = Pi(0), ALLOCi = 0, RCi = Γi and TRCwSi is as follows:

TRCwSi =





∑
j∈G0 Γj − Γi +

∑
l∈M min

{
ηl,

∑
j∈Gl

Γj

}
, if i ∈ G0,

∑
j∈G0 Γj + min

{
ηs,

∑
j∈Gs\{i} Γj

}
+

∑
l∈M,l 6=s min

{
ηl,

∑
j∈Gl

Γj

}
if i ∈ Gs, s ∈M.

The buyer implements Step 3.

• Step 3: (Possible Awards) The buyer awards max{0, NEED − TRCwSi} to each

Supplier i ∈ N̂ at unit price equal to P̂i. After these awards are made, the buyer

updates NEED; ALLOCi and RCi for all i ∈ N̂ ; and RCGl for all l ∈ M in the

following sequence:

◦ ALLOCi = ALLOCi + max{0, NEED − TRCwSi}
◦ NEED = Q−∑

i∈N ALLOCi,

◦ RCi = Γi − ALLOCi,

◦ RCGl = ηl −
∑

j∈Gl
ALLOCj.

If NEED = 0, then the auction ends. Otherwise, the buyer implements Step 4.

• Step 4: (Elimination) The buyer reduces the price meters until a supplier, denoted

by î, leaves the auction. At this time instant, the buyer sets N̂ = N̂ \ {̂i} and P̂i
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equal to the current price meter of Supplier i for all i ∈ N̂ . Let Ĝ0 = G0 ∩ N̂ and

Ĝl = Gl ∩ N̂ for all l ∈M. The buyer sets TRCwSi for all i ∈ N̂ as follows:

TRCwSi =





∑
j∈Ĝ0 RCj −RCi +

∑
l∈M min

{
RCGl,

∑
j∈Ĝl

RCj

}
, i ∈ Ĝ0,

∑
j∈Ĝ0 RCj + min

{
RCGs,

∑
j∈Ĝs

RCj −RCi

}
+

∑
l∈M,l 6=s min

{
RCGl,

∑
j∈Ĝl

RCj

}
, i ∈ Ĝs, s ∈M.

The buyer returns to Step 3.

Theorem 1. The descending mechanism above is an optimal solution to M-CGP.

The proof of Theorem 1 is provided in Section 2.3.2.

2.2 Procurement Under Business Rules

Our second procurement problem, referred to as M-BR, is defined as follows: There is a

buyer and a set N of suppliers. Each supplier i ∈ N has a private unit cost ci, which is a

realization of a random variable with a continuous cumulative distribution function Fi and a

continuous probability density function fi on the support [ci, c̄i]. The buyer wants to procure

a fixed quantity Q of a product, subject to the following business rules:

• The number of winning suppliers must be at least a minimum number, NL.

• The number of winning suppliers must be at most a maximum number, NH .

• Each winning supplier must be allocated a minimum fraction, a, of the total business.

• Each winning supplier can be given at most a maximum fraction, b, of the total busi-

ness.

The buyer’s objective is to minimize the total expected procurement cost, subject to the

usual incentive compatibility and individual rationality constraints and the above business

rules. It is easy to see that, under the above business rules, there exists a feasible allocation

if and only if there exists n ∈ {NL, NL + 1, . . . , NH} such that (aQ)n ≤ Q ≤ (bQ)n. Let L

denote the smallest value of n that satisfies this condition.

Independent of our work, Hu et al. (2013) note some comments (in the concluding section

of that paper) that are related to our analysis of business rules in this section. For their
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problem, the authors mention an allocation process for the case when the buyer uses specific

percentages to split the total award among multiple suppliers. This allocation process is

similar to our descending mechanism in Section 2.2.2.

As in the previous section, we first illustrate our descending mechanism for M-BR on a

simple example.

2.2.1 Illustrative Example

There is a buyer and a set of 6 suppliers. Each supplier has an independent and identically

distributed marginal cost in an interval [c, c̄] with a cumulative distribution function F . The

buyer wants to procure 100 units of a product, subject to the following business rules: (1) At

least three and at most five suppliers must be selected, and (2) Each selected supplier must

be given a minimum of 20 units and a maximum of 50 units of the product.

Let us first examine how the buyer would award the 100 units of business if she knew

the unit costs of the suppliers. Without loss of generality, let the costs of Suppliers 1–6

be such that c1 < c2 < c3 < c4 < c5 < c6. The optimal allocation in this case is easy to

understand and is as follows: Supplier 1 receives an award of 50 units, Supplier 2 receives

30 units, Supplier 3 receives 20 units, and Suppliers 4–6 do not receive any award.

We now return to the case when the buyer does not know the costs of the suppliers. For

purpose of illustration, let us assume that the costs of the suppliers (which are unknown to

the buyer) are in the same order as above, i.e., c1 < c2 < c3 < c4 < c5 < c6. As we will

soon see, the final allocations to the suppliers by our mechanism will be the same as that for

the deterministic setting above. For this example, our descending auction works as follows:

There is a common price meter for all suppliers. Let this meter start at a price P (0) = c̄

(Figure 2.2a) and decrease continuously, e.g., following the equation P (t) = c̄− t. From our

discussion in Chapter 1 and Section 2.1.1, we know that as the price meter reduces, suppliers

leave in the order of their unit costs, starting from the supplier with the highest unit cost

(Figure 2.2b). The price meter continues to decrease until all but three suppliers have left

the auction (Figure 2.2d). At this time instant, the buyer awards each of the remaining three

suppliers 20 units at a unit price equal to the current price meter. The meter continues to

decrease until all but two suppliers have left the auction (Figure 2.2e). At this time instant,

the buyer awards each of the remaining two suppliers 10 units at a unit price equal to the

current price meter. The meter continues to decrease until one more supplier has left the

auction (Figure 2.2f). At this time instant, the buyer awards the remaining supplier 20 units

at a unit price equal to the current price meter. The auction ends. To summarize, Supplier 1
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Figure 2.2. An illustration of a descending mechanism for M-BR.

receives a cumulative award of 50 units, Supplier 2 receives 30 units, Supplier 3 receives 20

units, and Suppliers 4–6 do not receive any award. The optimality of this mechanism is

formally established in Theorem 2 (Section 2.2.2).

2.2.2 Descending Mechanism

Recall that L is the smallest value of n ∈ {NL, NL + 1, . . . , NH} such that (aQ)n ≤ Q ≤
(bQ)n. Let K = b1−aL

b−a
c and β = 1 − aL − (b − a)K. The description of our descending

mechanism for problem M-BR is as follows:

• At any time t ≥ 0, Supplier i observes a continuously decreasing price meter Pi(t),

defined as follows:

Pi(t) = ψ−1
i

[
min

{
ψi(c̄i), max

j∈N
ψj(c̄j)− rt

}]
, (2.3)

where r is the rate at which the price is reduced and is a parameter chosen by the

buyer.

• The buyer continues to reduce the price meters until all but L suppliers have left the

auction. At this time instant, the buyer awards each of the remaining L suppliers aQ

units at unit prices equal to their respective price meters.

• The buyer continues to reduce the price meters until all but K + 1 suppliers have

left the auction. At this time instant, the buyer awards each of the remaining K + 1

suppliers βQ units at unit prices equal to their respective price meters.

• The buyer continues to reduce the price meters until one more supplier has left the

auction. At this time instant, the buyer awards each of the remaining K suppliers
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[b − a − β]Q units at unit prices equal to their respective price meters. The auction

ends.

Theorem 2. The descending mechanism above is an optimal solution to M-BR.

The proof of Theorem 2 is provided in Section 2.3.3.

In the next section, we will show that the descending mechanisms presented above for

problems M-CGP and M-BR are special cases of a mechanism that is optimal for a wider

class of mechanism design problems. We will define this general mechanism design problem,

derive its optimal solution, and show that the mechanisms in Sections 2.1 and 2.2 are special

cases of this optimal solution. Finally, we will argue that these mechanisms are optimal for

their respective problems, thus establishing Theorems 1 and 2.

2.3 Procurement Under Polymatroid Constraints

Let f : 2N → R+ be a non-decreasing and submodular set function with f(∅) = 0. That is,

we have: (1) f(S) ≤ f(T ), for all S ⊆ T ⊆ N (non-decreasing), and (2) f(S∪{s})−f(S) ≥
f(T ∪ {s})− f(T ), for all S ⊆ T ⊂ N , s ∈ N \ T (submodular). Let

Pf =
{
(Q1, Q2, . . . , QN) ∈ RN

+ :
∑
i∈S

Qi ≤ f(S), ∀ S ⊆ N}

be the polymatroid associated with f (Edmonds 1971). Consider the following procurement

problem, which we will denote as M-PM(f):

There is a buyer and a set N of suppliers, where |N | = N . Each supplier i ∈ N
has a private unit cost ci. The buyer wants to procure a fixed quantity f(N ) with the

objective of minimizing her total expected cost, subject to the usual incentive compatibility

and individual rationality constraints, and feasibility constraints (governing the allocations

given to the suppliers) that are specified by the polymatroid Pf .

Next, we provide an intuitive explanation of the set function f used in the definition of

M-PM(f).

• For an arbitrary subset S of suppliers, the function f(S) represents the maximum

allocation that can be feasibly given to the suppliers belonging to the set S. The

difference f(S ∪{s})−f(S) represents the value (that is, the increase in the maximum

allocation that can be feasibly given to the suppliers) of adding the supplier s to the

subset S.
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• The assumption that the set function f is non-decreasing means that the value of an

additional supplier to any subset of suppliers is non-negative.

• The assumption that the set function f is submodular intuitively means that the value

of an additional supplier diminishes as the set of suppliers to which the new supplier

is added grows.

Examples of papers that consider polymatroid feasibility constraints in an auction frame-

work include Bikhchandani et al. (2011) and Goel et al. (2012). In particular, our descending

mechanism in Section 2.3.1 below is more closely related to that of Goel et al. (2012); we

comment on this connection immediately after presenting our mechanism. Here, we briefly

comment on the intuition behind the descending mechanism: To solve our generalized mecha-

nism design problem, we need to solve an optimization problem over a polymatroid. For this

problem, the well-known greedy algorithm of Edmonds (1971) provides an optimal solution

and has the following property: The solution obtained by the greedy algorithm depends only

on the order of the virtual-costs of the suppliers. This is the main property that is exploited

in developing a descending mechanism that is optimal for the mechanism design problem.

The remainder of this section is organized as follows: In Section 2.3.1, we define a descend-

ing mechanism for M-PM(f), which we will denote as DM(N , f) and establish its optimality

in Theorem 3. Using this development, we prove Theorems 1 and 2 in Sections 2.3.2 and

2.3.3, respectively. In Section 2.3.4, we consider an extension to Problem M-PM(f), where

the total quantity to be procured by the buyer is endogenous, and the buyer obtains a rev-

enue that is linear in quantity. For this problem, we propose a descending mechanism that

is optimal.

2.3.1 Descending Mechanism

The descending mechanism DM(N , f) works as follows:

• Step 1: (Supplier-specific Price Meters) At any time t ≥ 0, Supplier i observes a

continuously decreasing price meter Pi(t), defined as follows:

Pi(t) = ψ−1
i

[
min

{
ψi(c̄i), max

j
ψj(c̄j)− rt

}]
, (2.4)

where r is the rate at which the price is reduced and is a parameter chosen by the

buyer.



www.manaraa.com

19

• Step 2: (Initialization) Setting N̂ = N , f̂ = f , P̂i = Pi(0) and Qi = 0 for all i ∈ N̂ ,

the buyer implements Step 3.

• Step 3: (Possible Awards) The buyer awards δi = f̂(N̂ )− f̂(N̂ \ {i}) units to each

Supplier i ∈ N̂ at unit price equal to P̂i. After these awards are made, the buyer

updates Qi = Qi + δi for all i ∈ N̂ and f̂(S) = f(S) − ∑
j∈S Qj for all S ⊆ N̂ . If

f̂(N̂ ) = 0, then the auction ends. Otherwise, the buyer implements Step 4.

• Step 4: (Elimination) The buyer reduces the price meters until a supplier, denoted

by î, leaves the auction. At this time instant, the buyer sets N̂ = N̂ \ {̂i} and P̂i equal

to the current price meter of Supplier i for all i ∈ N̂ . The buyer returns to Step 3.

Throughout this mechanism (and also for the mechanisms in Sections 2.1.2 and 2.2.2),

the incremental and cumulative awards given to the suppliers can also be displayed on their

respective “quantity meters”.

Remark 1: The auction is defined for those realizations of c = (c1, c2, . . . , cN) in which the

virtual costs ψi(ci), i = 1, 2, . . . , N , are distinct (i.e., no ties). This happens with probability 1

because of our assumption that ψi(·) is a strictly increasing function and Fi(·) is continuous,

for all i. However, the auction can also be modified to accommodate ties. Consider a

time instant when multiple suppliers, say those belonging to a set N̂e, leave simultaneously.

Consider an arbitrary sequence of the suppliers in the set N̂e. Starting with the first supplier

and considering one supplier at a time in this sequence, that supplier is eliminated from the

set N̂ . After each elimination, incremental awards are given to the remaining suppliers.

The price meters of the suppliers are temporarily frozen to their current values until all the

suppliers from the set N̂e have been eliminated. The precise description of this tie-breaking

process is as follows: Let Ne = |N̂e| and let (π1, π2, . . . , πNe) be an arbitrary sequence of

suppliers in the set N̂e. Let the index k be initialized to 1. The buyer sets N̂ = N̂ \ {πk},
and makes an incremental award of δi = f̂(N̂ ) − f̂(N̂ \ {i}) units to each Supplier i ∈ N̂
at a unit price equal to P̂i. After these awards are made, the buyer updates Qi = Qi + δi

for all i ∈ N̂ and f̂(S) = f(S) − ∑
j∈S Qj for all S ⊆ N̂ . If f̂(N̂ ) = 0, then the auction

ends. Otherwise, the buyer sets k = k + 1, updates N̂ , and repeats the award step above.

This process continues for Ne iterations (i.e., until all the suppliers in the set N̂e have been

eliminated). At this point, the buyer implements Step 4 and the auction continues.
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Remark 2: We briefly discuss the auction proposed in Chen and Ishida (2013), since that

auction also uses bidder-specific price meters. They show the optimality of their auction for

the special problem of maximizing the expected revenue for a seller from selling one unit to

multiple buyers. The translation of their mechanism to the reverse setting (a buyer procuring

from multiple sellers) we study would use increasing price meters. Notice that the descending

mechanisms proposed in Sections 2.1.2, 2.2.2, and 2.3.1 use decreasing price meters. This is

not merely a cosmetic difference. Their auction (in a symmetric setting) is related to the

first-price sealed-bid auction, where the bidders need to be quite sophisticated to perform

the non-trivial computation necessary to derive equilibrium strategies. In contrast, our

descending mechanisms are related to second-price sealed-bid auction, where it is a dominant

strategy for each bidder to reveal his true cost.

Connection of Our Descending Mechanism to that in Goel et al. (2012): Goel

et al. (2012) consider a forward setting in which the auctioneer sells multiple (homogenous)

units of a good. Each bidder has a privately-known unit valuation for the good and a

publicly-known budget that allows him to buy multiple units. The allocations given to the

bidders are subject to feasibility constraints that can be expressed as a polymatroid. For

this setting, the authors propose an ascending mechanism that achieves a Pareto-optimal

solution, i.e., there is no other solution in which a player (the seller or a bidder) obtains a

strictly higher utility and the remaining players are at least as better off. For the special

case where the auctioneer sells a fixed quantity of the good and each bidder has a budget

that is large enough to buy all units, their mechanism results in an efficient allocation.

This mechanism, modified for the reverse setting, is the same as the descending mechanism

proposed here, except for the following change in Step 1: The mechanism in Goel et al.

(2012) has a common price meter for all the suppliers whereas our descending mechanism

above has individualized price meters, one for each supplier.

The above connection plays a crucial role in proving an intermediate result in the following

theorem.

Theorem 3. The mechanism DM(N , f) is an optimal solution to M-PM(f).

Proof of Theorem 3: Let c = (c1, c2, . . . , cN) denote the vector of unit costs of the suppliers,

Q = (Q1, Q2, . . . , QN) denote the vector of allocations, and M = (M1,M2, . . . , MN) denote

the vector of payments given to the suppliers. From the Revelation Principle (Myerson

1981), it is sufficient to restrict attention to the class of direct revelation mechanisms, i.e.,

mechanisms in which suppliers reveal their costs truthfully. Such a mechanism is defined by
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a collection of functions {Q(·),M(·)}, where Qi(c) is the allocation to Supplier i and Mi(c)

is the payment to Supplier i. Using standard arguments in mechanism design (see, e.g.,

Chapter 5 of Krishna 2002), an optimal solution (Q∗,M∗) to M-PM(f) can be obtained as

follows:

• For any c, the allocation vector Q∗(c) solves:

min
Q

N∑
i=1

ψi(ci)Qi

s.t. Q ∈ Pf ,

N∑
i=1

Qi = f(N ).

(MR-PM(c))

• For every c, the payment to Supplier i is:

M∗
i (c) = ciQ

∗
i (c) +

∫ c̄i

ci

Q∗
i (ti, c−i) dti

Then, it is easy to see that the following two claims complete the proof of Theorem 3:

Claim 1. For every c and for every Supplier i, the quantity awarded to that supplier in

DM(N , f) is Q∗
i (c).

Claim 2. The mechanisms DM(N ,f) and (Q∗,M∗) result in the same expected payments

to all suppliers. Therefore, they result in the same total expected procurement cost for the

buyer.

The proof of Claim 1 exploits the connection of our mechanism, DM(N , f) to that in

Goel et al. (2012). The proof of Claim 2 invokes the Revenue Equivalence Theorem; see, e.g.,

Krishna (2002). The proofs of these two claims are technically involved, and are therefore

provided in Appendix A. ¥
Having established the optimality of the mechanism DM(N , f) for the mechanism design

problem M-PM(f), we now use this result to show the validity of Theorems 1 and 2. To

this end, we will construct a non-decreasing submodular set function f for each of our

procurement problems M-CGP and M-BR and show that (a) the mechanism design problems

M-PM(f) corresponding to these functions are equivalent to M-CGP and M-BR, respectively,

and (b) the descending mechanism DM(N , f) corresponding to these functions specializes

to the mechanisms in Section 2.1.2 and Section 2.2.2. This, along with Theorem 3 above,

establishes Theorems 1 and 2.
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2.3.2 Proof of Theorem 1

For any subset S ⊆ N , define Sk = S ∩Gk for all k ∈ M and S0 = S ∩G0. Define the set

function fc as follows:

fc(S) = min



Q,

M∑

k=1

min

(∑
j∈Sk

Γj, ηk

)
+

∑

j∈S0

Γj



 , ∀S ⊆ N . (2.5)

Note that the fact that the groups are disjoint is exploited in the construction of fc.

Theorem 1 follows as a consequence of the following claim:

Claim 3. The mechanism DM(N , fc) is the same as that in Section 2.1.2, and is an optimal

solution to M-CGP.

The proof of the above claim is provided in Appendix A. In proving this claim, we first

establish the following two results: (a) The function fc is non-decreasing and submodular.

(b) The feasible region of M-CGP is identical to that of M-PM(fc). These two results,

Theorem 3, and the fact that the two problems, M-CGP and M-PM(fc) have identical

objective functions (namely, minimizing the total expected payment given to the suppliers),

together imply that DM(N , fc) results in an optimal solution to M-CGP. Using these results,

we also establish that the incremental awards made in DM(N , fc) are identical to those made

in the descending mechanism in Section 2.1.2.

2.3.3 Proof of Theorem 2

Define the set function fb as follows:

fb(S) = Q min{b|S|, 1− a(L− |S|)+}, ∀S ⊆ N . (2.6)

The fact that the constraints are symmetric across suppliers (i.e., the bounds on the alloca-

tions given to the selected suppliers are independent of their identities) is exploited in the

construction of fb.

Theorem 2 is an immediate consequence of the following claim:

Claim 4. The mechanism DM(N , fb) is the same as that in Section 2.2.2, and is an optimal

solution to M-BR.



www.manaraa.com

23

The proof of the above claim is provided in Appendix A. Again, the first part of the

claim requires proving that the incremental awards made in the two mechanisms are identical.

The second part of the claim involves showing the following results: (a) The function fb is

non-decreasing and submodular. (b) Any feasible solution to M-BR is also feasible to M-

PM(fb). (c) The mechanism DM(N , fb) results in a feasible solution to M-BR. These three

results, Theorem 3, and the fact that the two problems, M-BR and M-PM(fb) have identical

objective functions (namely, minimizing the total expected payment given to the suppliers),

together imply that DM(N , fb) results in an optimal solution to M-BR.

2.3.4 Extension to Endogenous Procurement Quantity

Problem M-PM(f) can be extended to the case where the total quantity to be procured by

the buyer is endogenous, and the buyer obtains a revenue of R ·Q from consuming Q units.

To solve this problem, we modify the descending mechanism DM(N , f) in Section 2.3.1 as

follows:

• In Step 1, the definition of the price meters Pi(t), for all i ∈ N is modified as follows:

Pi(t) = ψ−1
i

[
min

{
R,ψi(c̄i), max

j
ψj(c̄j)− rt

}]
.

• In Step 2, we initialize N̂ as the set suppliers who are still in the auction after observing

their initial price meters. If the starting price meters of some suppliers fall below

their private costs, then these suppliers will not participate in the auction, i.e., leave

immediately after they see their price meters. Consequently, the set N̂ may be different

from the set N .

We have verified that the descending mechanism DM(N , f) with the above modifications

solves the endogenous-quantity extension of problem M-PM(f).

2.4 Extension to Concave Production Costs

In our analysis thus far, we have assumed that suppliers have linear production costs. In

the procurement literature, researchers have investigated optimal mechanisms under non-

linear production costs; see, e.g., Tunca et al. (2009) and Duenyas et al. (2013). A natural

question arises: To what extent do our results, in particular the optimality of the descending

mechanism in Section 2.3.1, hold when the suppliers incur non-linear production costs? In
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this section, we address this question by adopting the concave-cost structure in Duenyas et al.

(2013) and show that our results in Section 2.3 hold with some minor modifications that are

necessary to incorporate this concave-cost structure. We do require the additional restriction

that the polymatroid Pf defining the feasibility constraints is symmetric (Groenevelt 1991),

i.e.,

f(S) = w(|S|), ∀S ⊆ N ,

where w(·) is a non-decreasing and concave function with w(0) = 0. Thus, for any S ⊆ N ,

f(S) depends only on the cardinality |S| and not on the identity of the individual suppliers

constituting S. Note that the polymatroid associated with problem M-BR (i.e., with f = fb,

defined as in (2.6) above) is a symmetric polymatroid, while the polymatroid associated with

the problem M-CGP (i.e., with f = fc, defined as in (2.5)) is not symmetric.

Consider the mechanism design problem M-PM(f) in Section 2.3 with the following

modifications: (1) Each Supplier i incurs a concave production cost ciH(q) for producing q

units, where ci is that supplier’s private information, and the function H(·) is an increasing

and concave function common to all suppliers, satisfying H(0) = 0 (Duenyas et al. 2013). (2)

The feasibility constraints imposed on the allocations given to the suppliers form a symmetric

polymatroid Pf . We refer to this problem as M-PMC.

Consider the descending mechanism DM(N , f) in Section 2.3.1 with the following modifi-

cation in the payments given to the suppliers in Step 3: The buyer awards δi = f̂(N̂ )− f̂(N̂ \
{i}) units to each Supplier i ∈ N̂ with a corresponding payment of P̂i[H(Qi + δi)−H(Qi)].

We refer to this mechanism as DMC(N , f).

Theorem 4. The mechanism DMC(N , f) is an optimal solution to M-PMC.

Proof of Theorem 4: Using standard arguments in mechanism design, an optimal solution

(Q∗,M∗) to M-PMC can be obtained as follows:

• For any c, the allocation vector Q∗(c) solves:

min
Q

N∑
i=1

ψi(ci)H(Qi)

s.t. Q ∈ Pf ,
N∑

i=1

Qi = f(N ).

(MR-PMC(c))

• For every c, the payment to Supplier i is:

M∗
i (c) = ciQ

∗
i (c) +

∫ c̄i

ci

Q∗
i (ti, c−i) dti
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Then, the following two claims complete the proof:

Claim 5. For every c and for every Supplier i, the quantity awarded to that supplier in

DMC(N , f) is Q∗
i (c).

Claim 6. The mechanisms DMC(N , f) and (Q∗,M∗) result in the same expected payments

to all the suppliers. Therefore, they result in the same total expected procurement cost for

the buyer.

The proof of Claim 5 is provided in Appendix A. We avoid providing the proof of Claim 6

since it is similar to that of Claim 2, with trivial modifications necessary to incorporate

concave cost structure. ¥

Remark 3: When suppliers have convex production costs, an optimal allocation rule can

be obtained as a solution to an optimization problem that minimizes a convex objective

function subject to a polymatroid feasible region. While this optimization problem has an

interior optimal solution, the descending mechanism in Section 2.3.1 results in an allocation

that is necessarily a vertex of the polymatroid, and therefore may be sub-optimal. Similarly,

for the mechanism design problem in which the buyer has an increasing and concave revenue

function and suppliers have linear production costs, the descending mechanism may be sub-

optimal.

2.5 Conclusion and Future Research Directions

In real-world procurement problems, it is typical for buyers to impose bounds on the to-

tal amount to be sourced from individual suppliers and/or from subsets of suppliers. This

chapter studies two such procurement problems, and derives descending auction mecha-

nisms that are optimal. Moreover, we show that these mechanisms are special cases of a

descending mechanism that is optimal for a more general mechanism design problem with

constraints specified by a polymatroid. While in this general problem the buyer procures

a fixed (exogenously-specified) quantity and suppliers have linear production costs, we also

consider two extensions – one in which the procured amount is endogenous and the other

in which suppliers have concave production costs – and again develop descending auction

mechanisms that are optimal.

We briefly discuss possible research directions. For the procurement problems considered

in Sections 2.1–2.4, we assumed that the buyer procures a fixed quantity of a product and
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the underlying distributions on the costs of the suppliers are independent and common-

knowledge. These assumptions are critical for the optimality of the descending mechanisms

proposed in this chapter. It will be interesting to extend this work to incorporate some of

the following realistic scenarios: (1) The costs of the suppliers are correlated (which is often

the case when suppliers source components from a common upstream-supplier), (2) The

buyer needs to procure multiple units of many products, (3) The feasibility constraints on

the allocations given to the suppliers do not form a polymatroid.
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This chapter is organized as follows: In Sections 3.1 and 3.2, we formally define the optimal

mechanism and the VCG mechanism for the procurement setting introduced in Chapter 1.

In Sections 3.3 and 3.4, we define the VVCG mechanism and present conditions under which

it is optimal. Section 3.5 presents an example that shows that VVCG can be suboptimal.

We conclude our chapter in Section 3.6.

3.1 The Optimal Mechanism

For every i ∈ N , let ψi(c) = c+Fi(c)/fi(c) be a “virtual” cost function for all c ∈ [ci, c̄i]. We

make the standard assumption that ψi(·) is strictly increasing for all i ∈ N . Let ψ−1
i (v) be

the inverse of the function ψi(·) for all i ∈ N ; i.e., ψ−1
i (v) is equal to (i) ci if v ≤ ψi(ci), (ii)

c if ∃c ∈ [ci, ci] such that v = ψi(c), and (iii) ci if v ≥ ψi(ci). Let b = (b1, b2, . . . , bN) denote

the vector of bids of the suppliers, b−i denote the vector of bids excluding the bid of supplier

i ∈ N , Q = (Q1, Q2, . . . , QN+1) denote the vector of allocations given to the suppliers, and

M = (M1,M2, . . . , MN+1) denote the vector of payments given to the suppliers. For a bid

vector b, let ψ(b) = (ψ1(b1), ψ2(b2), . . . , ψN(bN)) denote the vector of virtual bids of the

suppliers.

Using standard arguments in mechanism design (see e.g., Myerson 1981), the following

sealed-bid mechanism, denoted by (QOPT ,MOPT ), is optimal under the above setting: For

a given b:

• The allocation vector QOPT (b, R) solves:

min
Q

N∑
i=1

ψi(bi)Qi + R ·QN+1

s.t. Q ∈ FEAS.

• The payment given to supplier i ∈ N is

MOPT
i (b, R) = biQ

OPT
i (b, R) +

∫ c̄i

bi

QOPT
i (z,b−i, R) dz (M-OPT)

and the payment given to supplier N + 1 is MOPT
N+1 (b, R) = R ·QOPT

N+1 (b, R).

We refer to the above mechanism as OPT.
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3.2 The VCG Mechanism

We now define the VCG mechanism (see e.g., Krishna 2002), denoted by {QV CG,MV CG}.
For a given b:

• The allocation vector QV CG(b, R) solves:

min
Q

N∑
i=1

biQi + R ·QN+1

s.t. Q ∈ FEAS.

(Q-VCG)

• Define H(b, R) =
∑N

i=1 biQ
V CG
i (b, R) + R · QV CG

N+1 (b, R) as the optimal value of the

objective function in (Q-VCG). Let H−i(b, R) = H(b, R) − biQ
V CG
i (b, R) for all

i ∈ N . The payment given to supplier i ∈ N is

MV CG
i (b, R) = H(c̄i,b−i, R)−H−i(b, R)

and the payment given to supplier N + 1 is MV CG
N+1 (b, R) = R ·QV CG

N+1 (b, R).

Let us now consider the special case of procuring one unit in the absence of the outside

option (i.e., R = ∞). Let (1̃) and (2̃) denote the supplier with the lowest and second-lowest

bid, respectively. Also, let (1) and (2) denote the supplier with the lowest and second-lowest

virtual bid, respectively. Then, in this special case, VCG procures the unit from supplier (1̃)

and pays him b(2̃); i.e., the highest amount supplier (1̃) can bid and still be the lowest-bid

supplier. The optimal mechanism OPT procures the unit from supplier (1) and pays him the

highest amount supplier (1) can bid and still be the lowest-virtual-bid supplier. That is, OPT

pays supplier (1) the amount ψ−1
(1)[ψ(2)(b(2))]; this is easy to derive using (M-OPT). Motivated

by this parallel between VCG and OPT in this special case, we define a transformation of

VCG which we refer to as the “virtual” VCG mechanism (VVCG).

3.3 The VVCG Mechanism

For a bid vector b and i ∈ N , let ψ(b) =
(
ψ1(b1), ψ2(b2), . . . , ψN(bN)

)
denote the vector

of virtual bids of the suppliers and ψ̂i(b) =
(
ψ−1

i [ψ1(b1)], ψ−1
i [ψ2(b2)], . . . , ψ−1

i [ψN(bN)]
)
.

The VVCG mechanism, denoted by {QV V CG,MV V CG}, is a sealed-bid mechanism defined

as follows:
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• The allocation given to supplier i ∈ {1, 2, . . . , N + 1} is

QV V CG
i (b, R) = QV CG

i (ψ(b), R).

• The payment given to supplier i ∈ N is

MV V CG
i (b, R) = MV CG

i (ψ̂i(b), ψ−1
i (R)) (M-VVCG)

and the payment given to supplier N + 1 is MV V CG
N+1 (b, R) = R ·QV V CG

N+1 (b, R).

For the special case of procuring one unit in the absence of the outside option, the VVCG

mechanism simply reduces to the mechanism in which the supplier with the lowest virtual

bid is selected and paid the highest amount that the supplier could bid to be selected. Thus,

it is identical to OPT for this case.

3.4 Optimality of VVCG

Let g: 2N∪{N+1} → R+ be a non-decreasing and submodular set function with g(∅) = 0.

That is, we have: (1) g(S) ≤ g(T ), for all S ⊆ T ⊆ N ∪ {N + 1} (non-decreasing), and (2)

g(S ∪ {s})− g(S) ≥ g(T ∪ {s})− g(T ), for all S ⊆ T , s ∈ N ∪ {N + 1} \ T (submodular).

The set of polymatroid feasibility constraints are defined as follows:

Pg =

{
Q ∈ RN+1

+ :
∑
i∈S

Qi ≤ g(S) ∀ S ⊆ N ∪ {N + 1},
N+1∑
i=1

Qi = g(N ∪ {N + 1})
}

.

Examples of papers that consider polymatroid feasibility constraints in an auction framework

include Bikhchandani et al. (2011), Goel et al. (2012) and Gupta et al. (2015). We now state

our main result.

Theorem 5. Let g be a non-decreasing and submodular set function with g(∅) = 0. If

FEAS = Pg, then the VVCG mechanism is identical to OPT, and therefore optimal.

Proof of Theorem 5: Fix an arbitrary bid vector b. By definition, QV V CG(b, R) =

QOPT (b, R) and MV V CG
N+1 (b, R) = MOPT

N+1 (b, R). Therefore, Theorem 5 can be established

if we show that MV V CG
i (b, R) = MOPT

i (b, R) for all i ∈ N under polymatroidal feasibility

constraints. To prove this, we exploit the fact that QV CG(ψ(b), R) for polymatroidal feasi-

bility constraints can be explicitly obtained by the well-known greedy algorithm of Edmonds

(1971) and has the following property: The solution depends only the ranks of the suppliers

in the ordered vector (ψ(b), R).
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For ease of notational exposition, let us assume a proxy bid bN+1 = R and correspond-

ingly, a virtual bid ψN+1(bN+1) = R for the outside option supplier. Let (i) denote the index

of the supplier with rank i in the ordered vector (ψ(b), R), i.e., ψ(1)(b(1)) ≤ ψ(2)(b(2)) ≤
. . . ≤ ψ(N+1)(b(N+1)). We are now ready to obtain the allocation vector QV CG(ψ(b), R)

using the greedy algorithm: Let A0 = ∅ and Ai = {(1), (2), . . . , (i)} for every i. Then

QV CG
(i) (ψ(b), R) = g(Ai)− g(Ai−1) for all i.

Consider an arbitrary supplier in the set N with rank i in the ordered vector (ψ(b), R).

Let k be the rank of this supplier in the ordered vector (ψ(c̄(i),b−(i)), R). Then, we have the

following cases:

• If ψ(i)(c̄(i)) < ψ(i+1)(b(i+1)), then k = i.

• If ∃j ∈ {i+1, i+2, . . . , N} such that ψ(j)(b(j)) ≤ ψ(i)(c̄(i)) < ψ(j+1)(b(j+1)), then k = j.

• If ψ(i)(c̄(i)) ≥ ψ(N+1)(b(N+1)), then k = N + 1.

Define Bj = Aj\{(i)} for any j ≥ i. We have the following:

MV V CG
(i) (b, R)− b(i)Q

V V CG
(i) (b, R)

= MV CG
(i) (ψ̂(i)(b), ψ−1

(i) (R))− b(i)Q
V CG
(i) (ψ(b), R)

= H(ψ̂(i)(c̄(i),b−(i)), ψ
−1
(i) (R))−H−(i)(ψ̂(i)(b), ψ−1

(i) (R))− b(i)Q
V CG
(i) (ψ̂(i)(b), ψ−1

(i) (R)) (3.1)

= c̄(i)Q
V CG
(i) (ψ̂(i)(c̄(i),b−(i)), ψ

−1
(i) (R))− b(i)Q

V CG
(i) (ψ̂(i)(b), ψ−1

(i) (R)) +
∑

j 6=(i)

ψ−1
(i) [ψj(bj)]

[
QV CG

j (ψ̂(i)(c̄(i),b−(i)), ψ
−1
(i) (R))−QV CG

j (ψ̂(i)(b), ψ−1
(i) (R))

]

= c̄(i)Q
V CG
(i) (ψ̂(i)(c̄(i),b−(i)), ψ

−1
(i) (R))− b(i)Q

V CG
(i) (ψ̂(i)(b), ψ−1

(i) (R)) +

k∑
j=i+1

ψ−1
(i) [ψ(j)(b(j))]

[
QV CG

(j) (ψ̂(i)(c̄(i),b−(i)), ψ
−1
(i) (R))−QV CG

(j) (ψ̂(i)(b), ψ−1
(i) (R))

]
(3.2)

= c̄(i)[g(Ak)− g(Bk)]− b(i)[g(Ai)− g(Ai−1)] +

k∑
j=i+1

ψ−1
(i) [ψ(j)(b(j))]

[
g(Bj)− g(Bj−1)− g(Aj) + g(Aj−1)

]

=
(
ψ−1

(i) [ψ(i+1)(b(i+1))]− b(i)

)(
g(Ai)− g(Ai−1)

)
+
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(
c̄(i) − ψ−1

(i) [ψ(k)(b(k))]
)(

g(Ak)− g(Bk)
)

+

k∑
j=i+2

(
ψ−1

(i) [ψ(j)(b(j))]− ψ−1
(i) [ψ(j−1)(b(j−1))]

)(
g(Aj−1)− g(Bj−1)

)

=

∫ ψ−1
(i)

[ψ(i+1)(b(i+1))]

b(i)

QV CG
(i)

(
ψ(z,b−(i)), R

)
dz +

∫ c̄(i)

ψ−1
(i)

[ψ(k)(b(k))]

QV CG
(i)

(
ψ(z,b−(i)), R

)
dz +

k∑
j=i+2

[∫ ψ−1
(i)

[ψ(j)(b(j))]

ψ−1
(i)

[ψ(j−1)(b(j−1))]

QV CG
(i)

(
ψ(z,b−(i)), R

)
dz

]

=

∫ c̄(i)

b(i)

QV CG
(i)

(
ψ(z,b−(i)), R

)
dz

=

∫ c̄(i)

b(i)

QV V CG
(i) (z,b−(i), R) dz.

The equality (3.1) follows from the facts that the allocation QV CG(·) is obtained from the

greedy algorithm and the function ψ−1
(i) (·) is increasing. Also, for every j ∈ {1, 2, . . . , i−1, k+

1, k + 2, . . . , N + 1}, we have QV CG
(j) (ψ(c̄(i),b−(i)), R) = QV CG

(j) (ψ(b), R) = g(Aj) − g(Aj−1).

This results in (3.2).

To summarize, we have MV V CG
(i) (b, R) = b(i)Q

V V CG
(i) (b, R) +

∫ c̄(i)
b(i)

QV V CG
(i) (z,b−(i), R) dz.

This along with the fact that QV V CG(b, R) = QOPT (b, R) imply that MV V CG
(i) (b, R) =

MOPT
(i) (b, R). This completes the proof of Theorem 5. ¥

Corollary 1. For the special case of symmetric suppliers (i.e., Fi = F , ci = c and c̄i = c̄

for all i), polymatroidal feasibility constraints, and in the absence of the outside option, the

VCG mechanism results in the same outcome as the VVCG mechanism, and hence optimal.

An analogous result to Corollary 1 is mentioned in Dughmi et al. (2012) in which a seller

sells multiple units of a good to N symmetric buyers with a restriction that the feasible set

of winners form a matroid.

Corollary 1 identifies a set of conditions under which VVCG is identical to the VCG

mechanism and is optimal. In the following result, we identify another set of sufficient

conditions under which VVCG is identical to the VCG mechanism and is optimal.

Theorem 6. If the costs of the suppliers in the set N are i.i.d. draws from a uniform

distribution with support [0, c̄] and there is no outside option, then the VVCG mechanism is

identical to the VCG mechanism and is optimal for an arbitrary set of feasibility constraints.
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Proof of Theorem 6: Under the conditions of Theorem 6, the allocations and payments

given to the suppliers in the VVCG mechanism are specified as follows: For every supplier i

and bid vector b, QV V CG
i (b) = QV CG

i (2 · b) and MV V CG
i (b) = MV CG

i (b). Since QV CG(2 ·
b) = QV CG(b) for all b, it is easy to see that the VVCG mechanism reduces to the VCG

mechanism. To prove the optimality of the VCG mechanism, we show that the total expected

payment given to the suppliers in this mechanism is equal to the total expected payment

given in the optimal mechanism OPT.

Note that QOPT (b) = QV CG(2 · b) = QV CG(b) for all b. Furthermore, it is well-known

that both VCG and OPT are truth-telling mechanisms. Consider an arbitrary supplier

i ∈ N . Let mV CG
i (ci) = Ec−i

[MV CG
i (c)] and mOPT

i (ci) = Ec−i
[MOPT

i (c)] for all ci ∈ [0, c̄].

Using Revenue Equivalence Theorem; see, e.g., Proposition 5.2 of Krishna (2002), we have

mV CG
i (ci) − mOPT

i (ci) = mV CG
i (c̄) − mOPT

i (c̄) for all ci. Note that MV CG
i (c̄, c−i) = c̄ ·

QV CG
i (c̄, c−i) and MOPT

i (c̄, c−i) = c̄ · QOPT
i (c̄, c−i). Since QV CG(c) = QOPT (c) for all c,

we have MV CG
i (c̄, c−i) = MOPT

i (c̄, c−i), and consequently, mV CG
i (c̄) = mOPT

i (c̄). Thus,

mV CG
i (ci) = mOPT

i (ci) for all ci and i ∈ N . Finally, E
[∑

i m
V CG
i (ci)

]
= E

[∑
i m

OPT
i (ci)

]
,

which completes the proof of Theorem 6. ¥
In the next section, we show that if the set FEAS is not a polymatroid, then the VVCG

mechanism may not result in an optimal outcome.

3.5 Sub-Optimality of VVCG: An Example

Lemma 1. Consider the following example of a buyer and two suppliers: Supplier 1 has a

privately-known unit cost c1, which is a realization of a uniform distribution with support

[0, c̄]. Supplier 2 has a publicly-known unit cost R. Let m > 1 and R ≥ 2mc̄. There are

only two possible feasible allocations: (0, 1) and (m, 0). Then, for this example, the VVCG

mechanism is not an optimal mechanism for the buyer.

Proof of Lemma 1: To prove Lemma 1, we show that the total expected payment given

to the suppliers in the VVCG mechanism is higher than the total expected payment given

in the optimal mechanism. Here, the solution QV CG(b1, R) defined in (Q-VCG) is obtained

as follows:

QV CG(b1, R) =





(0, 1), b1 > R/m,

(m, 0), b1 ≤ R/m.

To obtain the total expected payment in the VVCG mechanism, we first identify the optimal

bidding strategy of supplier 1. Let b∗1(c1) = argmaxb1U
V V CG
1 (b1, c1, R) be the optimal bidding
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strategy of supplier 1, where UV V CG
1 (b1, c1, R) is the utility of that supplier when he submits

the bid b1. Using the definition of the VVCG mechanism and the assumption that R ≥ 2mc̄,

the utility of supplier 1 can be expressed as follows:

UV V CG
1 (b1, c1, R) = MV V CG

1 (b1, R)− c1Q
V V CG
1 (b1, R)

= MV CG
1 (b1, ψ

−1
1 (R))− c1Q

V CG
1 (ψ1(b1), R)

= c̄QV CG
1 (c̄, ψ−1

1 (R)) + ψ−1
1 (R)QV CG

2 (c̄, ψ−1
1 (R)) −

ψ−1
1 (R)QV CG

2 (b1, ψ
−1
1 (R))− c1Q

V CG
1 (ψ1(b1), R)

= c̄QV CG
1 (c̄, c̄) + c̄QV CG

2 (c̄, c̄)− c̄QV CG
2 (b1, c̄)− c1Q

V CG
1 (2b1, R)

= c̄− c̄QV CG
2 (b1, c̄)− c1Q

V CG
1 (2b1, R).

Thus,

UV V CG
1 (b1, c1, R) =





c̄−mc1, b1 < c̄/m

−mc1, c̄/m ≤ b1 ≤ R/(2m)

0, b1 > R/(2m).

It is trivial to see that b∗1(c1) < c̄/m if mc1 ≤ c̄, and b∗1(c1) > R/(2m) otherwise.

As a result, we have: (1) MV V CG
1 (b∗1(c1), R) = c̄ if c1 ≤ c̄/m, and 0 otherwise. (2)

MV V CG
2 (b∗1(c1), R) = 0 if c1 ≤ c̄/m, and R otherwise. Thus, the total expected payment

given to the suppliers in VVCG is

Ec1 [M
V V CG
1 (b∗1(c1), R) + MV V CG

2 (b∗1(c1), R)] = c̄ p(c1 ≤ c̄/m) + R p(c1 > c̄/m)

=
c̄

m
+

(
1− 1

m

)
R. (3.3)

To compare this with the optimal total expected payment given to the suppliers, we use

the OPT mechanism introduced in Section 3.1 to obtain an optimal solution for this example

as follows: (1) QOPT (c1, R) = (m, 0). (2) MOPT (c1, R) = (mc̄, 0). Thus, the total expected

payment given to the suppliers in OPT is Ec1 [M
OPT
1 (c1, R)+MOPT

2 (c1, R)] = mc̄. This along

with (3.3) gives:

Ec1 [M
V V CG
1 (b∗1(c1), R) + MV V CG

2 (b∗1(c1), R)]− Ec1 [M
OPT
1 (c1, R) + MOPT

2 (c1, R)]

=
(m− 1)[R− (m + 1)c̄]

m
,

which is strictly positive under our assumptions that R ≥ 2mc̄ and m > 1. This proves

Lemma 1. ¥
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3.6 Concluding Remarks

This chapter studies the VVCG mechanism, and investigates its optimality in the context of

procurement. We show that VVCG is optimal if the feasibility constraints that govern the

allocations given to the suppliers form a polymatroid. Using an example, we also demonstrate

that if the feasibility constraints do not define a polymatroid, then VVCG may not be

optimal.
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This chapter is organized as follows: In Sections 4.1 and 4.2, we discuss the contributions of

our work and the related literature. In Section 4.3, we present our finite-horizon stochastic

DP on distressed selling and obtain an optimal policy for this DP. Section 4.4 analyzes the

infinite-horizon approximation. For the special case of exponentially-distributed procure-

ment capacities, we use the approximation to obtain closed-form expressions for the main

quantities of interest, namely the volume of distressed sales and the loss in welfare of the

farmers. Sections 4.5 and 4.6 test our analysis on real data and suggest ways in which it can

be used to evaluate policy interventions. We conclude our chapter in Section 4.7 and discuss

future research directions.

4.1 Our Contributions

The two main contributions of our work are as follows:

1. Model, Validation on Real Data, and its Use in Policy-Making: On the mod-

eling front, our contribution is to build a tractable model that captures the salient

features of the ground realities that cause distressed selling. Using real data on the

production of rice and its procurement by the government of India under the support-

price program, we establish the accuracy of our model’s prediction on the volume of

distressed sales. We then show how our model and its solution can serve as a simple

and useful tool for policy-makers to capture the relative impact of the improvements in

the main factors affecting distressed sales, namely the mean and variability of the pro-

curement capacity, the holding cost incurred by the farmers, and the lack of affordable

credit.

2. Technical Analysis: On the technical front, our contribution is twofold: (a) The

real-world setting of distressed selling results in a finite-horizon stochastic dynamic

program that is both interesting and non-trivial to solve. We obtain an optimal policy

for this problem as well as for its infinite-horizon approximation, and establish an

attractive performance guarantee on the closeness of the approximation. (b) We obtain

closed-form expressions for the optimal policy – and for several quantities of interest

to planners – for the special case of exponentially-distributed procurement capacities,

which we show fit the real data well. The availability of these closed-form expressions

increases the potential for the use of our work as a policy-making tool.
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4.2 Literature Review

Broadly, our work belongs to the growing stream of research in Operations Management on

agricultural operations. Below, we discuss a few papers in this domain.

An et al. (2015) consider a situation in which farmers choose to form an aggregation,

which engages in Cournot competition with the rest of the individual farmers. The authors

develop five different models to individually capture the impact of reduced cost, increased

process yield, increased brand awareness, reduced intermediaries, and reduced price uncer-

tainty, on the decisions of the farmers to join the aggregation and their payoffs. They show

that a farmer joins an aggregation only when the size of the aggregation is below a certain

threshold. Dawande et al. (2013) propose mechanisms for the socially-optimal distribution

of surface water between primary farms (that are close to the water-sources) and secondary

farms (that are relatively farther). Huh and Lall (2013) develop stochastic programming

models to analyze a farmer’s decision on the set of crops planted, the amount of irrigation

water acquired, and the allocation of water to the selected crops, under uncertainty in market

price and rainfall.

There are several papers that investigate the provision of valuable information to farmers

and its impact on their equilibrium behavior and profits. For example, Chen et al. (2015)

consider a problem in which there are multiple heterogeneous farmers, each endowed with

a known production capability. Farmers can post questions on a forum to improve their

production capabilities. A representative expert monitors these questions and answers them

depending upon his availability. A core user (a knowledgeable farmer) can choose to be silent

or responsive to such questions. If the core user chooses to respond, then he can strategically

decide the extent or informativeness of his response. The authors show that, in equilibrium,

the core user never provides an answer that is more informative than the answer provided by

the expert. Chen and Tang (2015) construct a stylized model in which each farmer receives a

noisy public signal and a noisy private signal to estimate the market price uncertainty. They

analyze the farmers’ production decisions in Cournot competition and show that the private

signals always improve farmers’ welfare. On the other hand, in the presence of private signals,

there are instances when the public signal does not create value for the farmers. Parker et al.

(2015) conduct an empirical study to show that information and communication technologies

(such as mobile phone networks) reduce price dispersion of crops in rural markets. Tang et

al. (2015) investigate the role of market information (e.g., market demand) and agricultural

advice (e.g., on reducing production cost and/or improving process yield) when farmers

engage in Cournot competition under uncertain market demand and uncertain process yield.
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Chen et al. (2013) develop a single-period model in which ITC, an Indian conglomerate, can

provide training to so-called “contracted” and “non-contracted” farmers to improve their

productivity. The contracted farmers can supply their produce either directly to ITC or in

the open market, whereas, the non-contracted farmers sell their produce only in the open

market. The authors analyze farmers’ strategic production and delivery decisions and show

that the contracted farmers always sell directly to ITC. Furthermore, they find that, in many

cases, it is in ITC’s best interest to provide training to the non-contracted farmers as well.

There is a growing interest in analyzing governmental subsidy programs and their impact

on farmers’ welfare. For example, Alizamir et al. (2016) develop a model to analyze the

effect of two specific U.S. government subsidy programs – Price Loss Coverage (PLC) and

Agricultural Risk Coverage (ARC) – on farmers’ planting decisions and social welfare. The

PLC program insures farmers against losses due to low market prices whereas the ARC

program insures farmers against losses due to low revenues. Most of their analysis considers

a single farmer who has the option to enroll either in the PLC or ARC program and needs to

decide the quantity of land for planting a crop at the beginning of the growing season. Yield

uncertainty is realized at the end of the growing season, which together with the number

of acres planted for the crop determines its market price. Our work also contributes to the

literature on the operational analysis of socially-responsible schemes; see e.g., Cohen et al.

(2015), Lim et al. (2015) and Muthulingam et al. (2013).

From a methodological standpoint, our work is also related to the wide stream of research

on inventory management (see, e.g., Porteus 2002) and commodity operations (see, e.g.,

Secomandi 2010; Devalkar et al. 2011) that uses dynamic programming to obtain an optimal

policy structure. In this body of work, typically a manufacturer is considered who makes

ordering and selling decisions in order to maximize his expected payoff. In contrast, in the

problem we study, starting with an initial inventory level, the farmers face random selling

quotas and only make selling decisions in order to maximize their expected payoffs.

4.3 Model and Analysis

We begin by defining our model and formulating a stochastic DP in Section 4.3.1. Then, in

Section 4.3.2, we obtain the structure of an optimal policy of this DP.
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4.3.1 Problem Definition

The farming community1 (hereafter, F) wants to sell a harvest of quantity Q in a selling

season that consists of T periods. We use t ∈ {1, 2, . . . , T} as the index of a period. F can

sell its produce either to the government (hereafter, G) at the support price S, or to an

outside agent (hereafter, A) at a random unit price Wt. F incurs a per-period holding cost

h for every unit of inventory on hand at the end of each period and a per-period discount

factor α ∈ (0, 1). G is endowed with a random procurement capacity Yt in period t. We

assume that {(Yt,Wt) : t = 1, 2, . . . , T} is a sequence of i.i.d. random vectors2 with support

Y ×W , where Y = [0, y] and W = [w, w]. We use (Y, W ) to denote a generic pair (Yt,Wt)

and (y, w) to denote a realization of (Y, W ). Let φ denote the marginal density function for

Y . We assume that φ is strictly positive in the support Y . The salvage value of any unsold

quantity remaining with F at the end of the season is zero3. To avoid trivial outcomes, we

make the realistic assumption that αS ≥ w + h.

The sequence of events in any period t ∈ {1, 2, . . . , T} in F’s problem is as follows:

1. F observes xt, the inventory at the beginning of period t, yt, the realization of Yt (the

procurement capacity of G in period t) and wt, the realization of Wt (the unit price of

A in period t). The state in period t is (xt, yt, wt).

2. F makes selling decisions: (1) qG
t is the amount sold to G in period t, and (2) qA

t is

the amount sold to A in period t. These quantities satisfy the following requirements:

(a) qG
t , qA

t ≥ 0, (b) qG
t ≤ yt, (c) qG

t + qA
t ≤ xt. That is, the amounts sold to G and A

in period t are non-negative, the amount sold to G in period t is at most its realized

capacity in that period, and the total amount sold to G and A in period t is at most

the inventory at the beginning of that period.

1To study the impact of operational factors that include limited and uncertain procurement capacity at
GPCs, we consider a single-farmer model and abstract away from the effect of competition among farmers.
Single-farmer models are common in the O.M. literature; see e.g., Alizamir et al. (2016) and Huh and Lall
(2013).

2The i.i.d. assumption is purely used for analytical tractability. In particular, the optimal policy for our
finite-horizon model holds even without this assumption. However, for our infinite-horizon approximation,
we require this assumption to obtain an optimal policy structure.

3This assumption is only to ensure that F does not deliberately keep unsold quantity at the end of the
selling season. For instance, the analysis remains unaffected as long as the salvage value is no more than w.
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Thus, we have the identity

xt = Q−
t−1∑
s=1

(qG
s + qA

s ).

A feasible policy is defined as a rule that uses only the information up until period t to

specify the quantities qG
t and qA

t . Let Π denote the set of all feasible policies, and let π be

an element of the set Π. The goal of F is to design a feasible policy that maximizes the

expected present value of its profits over periods 1, 2, . . . , T ; that is

E

[
T∑

t=1

αt−1
(
SqG

t + Wtq
A
t − hxt+1

)
]

,

where the expectation is taken with respect to the random procurement capacities of G and

the unit prices of A in periods 1, 2, . . . , T . We refer to this problem as PT . Briefly, F faces

the following trade-off: On the one hand, selling a unit to A guarantees an immediate cash

inflow and ensures that no more costs are incurred in holding this unit in inventory. On the

other hand, holding on to a unit gives the possibility of obtaining a higher revenue at a later

(random) time. An optimal policy is a feasible policy that maximizes the expected present

value of the profits of F over periods 1, 2, . . . , T , thereby balancing the above-mentioned

trade-off. The amount of distressed sales is the total quantity sold to A over all the periods.

We now proceed to formulate Problem PT as a stochastic dynamic program. Let ft,T (x, y, w)

denote the optimal expected present value in period t of the profits received by F over periods

t, t + 1, . . . , T , given that xt = x, Yt = y and Wt = w. Bellman’s equation for this problem

is as follows: For every t ∈ {1, 2, . . . , T}, x ≥ 0 and (y, w) ∈ Y ×W , we have

ft,T (x, y, w) = max
qG,qA

SqG + wqA − h(x− qG − qA)

+ αE
[
ft+1,T (x− qG − qA, Yt+1,Wt+1)

]
(4.1)

s.t. qA ≥ 0, 0 ≤ qG ≤ y, qA + qG ≤ x , (4.2)

where fT+1,T (x, y, w) = 0 for all x ≥ 0, and (y, w) ∈ Y ×W .

Next, we derive some results on the optimal profit and the optimal policy for F. Through-

out this chapter, we use increasing/decreasing in the weak sense.

4.3.2 Optimal Policy Structure

Lemma 2. For every t ∈ {1, 2, . . . , T}, and (y, w) ∈ Y × W, the function ft,T (x, y, w) is

concave and increasing in x; that is, as the available inventory, x, increases, the optimal

profit increases whereas the marginal value of a unit decreases. Moreover, the marginal value

of a unit is smaller than S; that is, ∂
∂x

ft,T (x, y, w) ≤ S holds for all (t, x, y, w).
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The proof of the above result and all the subsequent results are provided in Appendix B.

Our next result is the following. Since the agent’s price is always lower than the government’s

support price, it seems intuitive that F should sell the maximum possible quantity to G in

every period. We show that this is optimal.

Lemma 3. The set ΠG contains an optimal policy for Problem PT , where ΠG ⊆ Π denotes

the class of feasible policies in which F sells the maximum possible quantity to G in every

period. That is, there exists an optimal policy under which qG
t = min{xt, Yt} for all t.

Aided by Lemma 3 which characterizes the optimal quantities sold to G, we will next

characterize the optimal quantities sold to A. We need some preliminary analysis and defi-

nitions first.

Let v denote a set of functions {vt,T (w) : t = 1, 2, . . . , T, w ∈ W}. The sell-down-to v

policy, denoted by πS(v), is defined as follows: It sells the maximum possible quantity to G

in every period. For every period t, if the inventory in period t after selling to G exceeds the

threshold vt,T (Wt), it sells enough to A to bring the inventory down to the level vt,T (Wt).

Mathematically, this policy is defined through the following relations:

qG
t = min(xt, Yt) and qA

t = (xt − Yt − vt,T (Wt))
+ for all t.

We will next specify a set of thresholds v∗ = {v∗t,T (·)} and show that the sell-down-to v∗

policy is optimal for PT . To do this, we use Lemma 3 to rewrite Problem PT as:

ft,T (x, y, w) = Sx if x ≤ y , (4.3)

= Sy + max
{v:0≤v≤x−y}

w(x− y − v)− hv + αE[ft+1,T (v, Yt+1,Wt+1)]

if x > y. (4.4)

Here, the decision variable v denotes the amount of inventory that F carries over into the

next period, i.e., period t + 1. Define v∗t,T (w) as

v∗t,T (w) = argmaxv≥0 − wv − hv + αE[ft+1,T (v, Yt+1,Wt+1)].

Recall from Lemma 2 that ft+1,T (v, Yt+1,Wt+1) is concave in v for all (Yt+1,Wt+1) ∈
Y × W . Therefore, the objective function in (4.4) is concave in v. This, along with the

definition of v∗ = {v∗t,T (·)} immediately implies the following result.

Theorem 7. The policy πS(v∗) is an optimal policy for Problem PT .
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To assess the relative impact of various factors on distressed selling, it is useful to compute

quantities such as the total volume of distressed sales and the profit of the farmers under the

optimal policy for PT . However, due to the non-stationary and state-dependent nature of

this policy, it is difficult to obtain closed-form expressions for these quantities. Therefore, we

develop an approximation that simplifies our analysis to the extent that it enables obtaining

these quantities in closed-form. In the real data that we will discuss later in Section 4.5,

we make two observations: (1) The selling horizon T is large (typically around 150 days or

more). (2) The range (w−w)/w of the agent’s price is small (typically around 10% or less);

see Directorate of Economics and Statistics (2010b). Motivated by these observations, we

consider an approximation P̂∞ that differs from PT in two respects: (1) P̂∞ is an infinite-

horizon problem, and (2) the agent’s price is fixed at w. That is, Problem P̂∞ is that of

maximizing

E

[ ∞∑
t=1

αt−1
(
SqG

t + wqA
t − hxt+1

)
]

.

4.4 A Tractable Infinite-Horizon Approximation

In this section, we show that a threshold-based policy defined by a single constant is optimal

for Problem P̂∞ and obtain a closed-form expression for that constant threshold. Moreover,

we show that the optimal profit in Problem P̂∞ closely approximates the optimal profit in

Problem PT for realistic values of our model parameters. Thus, for the purpose of deriving

insights, we use P̂∞ as a proxy for the original problem PT .

4.4.1 Optimal Policy for the Infinite Horizon Problem P̂∞

We begin our analysis of P̂∞ with a definition. A constant sell-down-to v policy, denoted

by πCS(v), is defined by a constant number, v, as follows: It sells the maximum possible

quantity to G in every period. If the inventory in the first period after selling to G exceeds v,

then it sells enough to A to bring the inventory down to the level v. There are no sales to

A beyond the first period. Mathematically, this policy is defined by the following relations:

qG
t = min(xt, Yt) ∀ t, qA

1 = (x1 − Y1 − v)+, and qA
t = 0 ∀ t ≥ 2.

We refer to v as the constant sell-down-to threshold. Next, we define a specific constant

threshold, v̂, and subsequently prove the optimality of the πCS(v̂) policy for problem P̂∞.
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Let Ỹ1 = 0 and Ỹt = (Y2 + Y3 + . . . + Yt) for all t ≥ 2. Let us denote by v̂ the solution to

the following equation:

∞∑
t=2

(
αt−1S − 1− αt−1

1− α
h

)
P

(
Ỹt−1 ≤ v < Ỹt

)
= w. (4.5)

The left-hand side of (4.5) represents the expected marginal benefit of holding more than

v ≥ 0 units of inventory at the end of period 1; in particular, for any period t = 2, 3, . . ., the

marginal unit is sold to G in that period with probability P (Ỹt−1 ≤ v < Ỹt) at profit equal to

the discounted support price less the discounted sum of holding costs accrued over periods

1, 2, . . . , t− 1. The right-hand side of (4.5) represents the guaranteed profit from selling the

marginal unit to A in period 1.

Theorem 8. The policy πCS(v̂) is an optimal policy for Problem P̂∞.

4.4.2 Comparative Statics

Given the optimal policy for Problem P̂∞, we now explain the change in the threshold v̂

with respect to the agent’s price w, the support price S, the holding cost h and the discount

factor α. Notice that the amount of distressed sales is (Q−Y1− v̂)+. Thus, when Y1 < Q− v̂,

there is some amount of distressed selling. When this happens, the change in the amount of

distressed sales due to the change in one of the parameters, w, S, h or α, is exactly equal to

the change in the value of v̂ but in the reverse direction. The result below has the intuitive

implication that a higher holding cost, a higher cost of capital (i.e., lower α), a lower support

price or a more attractive price from the agent increases the quantity of distressed sales.

Theorem 9. The threshold v̂ is increasing in α and S, and decreasing in w and h.

Next, we show that greater variability in the procurement capacities makes F worse off

(i.e., reduces F’s optimal profit). To capture this idea formally, we use the well known notion

of convex ordering of random variables, whose definition we recall below.

Definition 1: (Shaked and Shanthikumar 2007) For any two random variables X and Y

such that E[X] = E[Y ] < ∞, X is said to be smaller in the convex order than Y (denoted

by X ≤cx Y ) if the following statement holds: For every convex function H : R → R,

E[H(X)] ≤ E[H(Y )] if these expectations exist.
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Theorem 10. Let Y A and Y B be two random variables such that Y A ≤cx Y B. Let {Y A
t } and

{Y B
t } be two sequences of i.i.d. realizations of the random variables Y A and Y B, respectively.

Then, for every Q ≥ 0 and y ∈ Y, f̂A
∞(Q, y) ≥ f̂B

∞(Q, y), where f̂A
∞ and f̂B

∞ denote the optimal

profit functions of F when the procurement capacities are given by the sequences {Y A
t } and

{Y B
t }, respectively. Moreover, E[f̂A

∞(Q, Y A
1 )] ≥ E[f̂B

∞(Q, Y B
1 )].

4.4.3 Closeness of the Approximate Problem P̂∞ to the Original Problem PT

In this sub-section, we answer the following question: How good an approximation of PT is

P̂∞? Recall that f1,T (Q, y, w) is the optimal profit in PT , starting from the state (Q, y, w).

Let f̂∞(Q, y) denote the optimal profit in P̂∞ starting from the state (Q, y) (recall that the

agent’s price is w in every period in P̂∞). Also, let µ and σ respectively denote the mean and

the standard deviation of the procurement capacity distribution φ. In Theorem 11 below,

we bound the relative error
f̂∞(Q,y)−f1,T (Q,y,w)

f1,T (Q,y,w)
from above by a constant ∆. This development

uses the seminal work on distribution-free newsvendor bounds of Scarf (1958) and Gallego

and Moon (1993).

Theorem 11. For every T ∈ N, Q > 0, y ∈ Y and w ∈ W, the ratio
f̂∞(Q,y)−f1,T (Q,y,w)

f1,T (Q,y,w)
is

bounded from above by

∆ =
w − w

w
+

αT S

w

[
(T − 1)σ2 +

(
v̂ − (T − 1)µ

)2]1/2
+

[
v̂ − (T − 1)µ

]

2v̂
.

We check the performance of the bound ∆ on real data. Although a more detailed

description of our data will be provided in Section 4.5, a summary of the values of the

model parameters that are used to compute this bound is as follows: S = 10, T = 150,

h = 2.217 × 10−3, α ∈ [0.9986, 0.9971], µ = [300, 3000], w ∈ [8, 8.5] and w = w/1.1. Under

exponentially-distributed procurement capacities (that fits the real data reasonably well; see

Section 4.5 for details), the value of the bound, in the worst case, is 0.1161, thus illustrating

the closeness of P̂∞ to PT .

4.4.4 Special Case of Exponentially Distributed Capacities: Closed Form Ex-

pressions

Let us now turn our attention to the special case of exponentially-distributed procurement

capacities. This special case is important for several reasons: (1) As will be shown later in

Section 4.5, the exponential distribution fits the real data reasonably well. (2) We can obtain



www.manaraa.com

46

closed-form expressions for several quantities of interest in Problem P̂∞, e.g., the optimal

profit and the loss in welfare of the farmers. (3) The exponential distribution results in the

worst-case loss in welfare over all NBUE4-distributed procurement capacities.

The result below specifies the closed-form expressions for the constant sell-down-to thresh-

old v̂, the expected amount of distressed sales, and the optimal expected profit in P̂∞, when

the procurement capacities of G are exponentially-distributed. Later, in Sections 4.5 and

4.6, we will use these expressions to assess the performance of our model on real data and

to suggest their use in policy-making.

Theorem 12. Assume that the procurement capacities {Yt} are i.i.d. and exponentially

distributed with mean 1/λ. Then, the following statements hold:

1. The constant sell-down-to threshold is

v̂ =
1

λ(1− α)
log

(
α(1− α)S + αh

(1− α)w + h

)
. (4.6)

2. The expected amount of distressed sales is

EY1 [(Q− Y1 − v̂)+] = (Q− v̂)+ − 1− e−λ(Q−v̂)+

λ
.

3. The maximum expected discounted sum of profits is

EY1 [f̂∞(Q, Y1)] = Ĝ(Q) if Q < v̂, (4.7)

= [(S − w)/λ][1− e−λ(Q−v̂)] + (Q− v̂)w + Ĝ(v̂)e−λ(Q−v̂)

+ [αĜ(v̂)− hv̂][1− e−λ(Q−v̂)] if Q ≥ v̂, (4.8)

and

Ĝ(x) =
[(1− α)S + h][1− e−(1−α)λx]

(1− α)2λ
− hx

1− α
∀ x ≥ 0. (4.9)

Let L(Q) = SQ−EY1 [f̂∞(Q, Y1)] be the loss in welfare of the farmers due to distressed sales.

The closed-form expressions in Theorem 12 can be useful in quickly quantifying the impact

of an increase in procurement capacity or an increase in the discount factor (which can be

achieved by making capital more affordable to farmers) on the loss in welfare; we will discuss

this in more detail in Section 4.6.

Next, we show that exponential distribution provides the worst-case loss in welfare cor-

responding to any NBUE-distributed procurement capacities. First, we define the class of

NBUE distributions and then, state our result formally.

4NBUE stands for New Better than Used in Expectation and is a commonly-used family of distribu-
tions that includes exponential, Weibull, and truncated normal distributions. In fact, the family of IFR
distributions is a subset of the NBUE family.
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Definition 2: (Shaked and Shanthikumar 2007) A non-negative random variable X is

NBUE if E[X − t|X > t] ≤ E[X] for all t ≥ 0.

Theorem 13. Assume that the procurement capacities {Yt} are i.i.d. and follow an NBUE

distribution with mean 1/λ. Then, for every Q ≥ 0, the loss in welfare is bounded from above

by the value of L(Q) for exponentially-distributed capacities with mean 1/λ.

We now proceed to examine the loss in welfare (i.e., L(Q)) more closely. In particular,

we want to differentiate between (a) the impact of limited but certain procurement capac-

ities and (b) the impact of uncertainty in the procurement capacities on L(Q). Let the

procurement capacity in every period be 1/λ. In this case, it is easy to see that the optimal

sell-down-to threshold is

vD =
1

λ

⌊
1 +

1

log(1/α)
log

(
α(1− α)S + αh

(1− α)w + h

)⌋

and the optimal profit is

FD
∞(Q) =





S/λ +
(
Q− 1/λ− vD

)
w +

∑λvD

t=1
1
λ

(
αtS − 1−αt

1−α
h
)

; Q > 1/λ + vD,

S/λ +
∑t̂−1

t=1
1
λ

(
αtS − 1−αt

1−α
h
)

+
(
Q− t̂

λ

)(
αt̂S − 1−αt̂

1−α
h
)

; 1/λ < Q ≤ 1/λ + vD,

SQ; Q ≤ 1
λ
,

where t̂ is the number of periods required to sell Q − 1/λ units to G at the rate 1/λ, i.e.,

t̂ = dλQ− 1e. Define

LD(Q) = SQ− FD
∞(Q)

as the loss in welfare due to limited but certain procurement capacities and

LU(Q) = FD
∞(Q)− EY1

[
f̂∞(Q, Y1)

]

as the loss in welfare due to the uncertainty in procurement capacities. Clearly, L(Q) =

LD(Q) + LU(Q). Using Theorem 10, we have FD
∞(Q) ≥ EY1 [f̂∞(Q, Y1)] for all Q; thus,

LU(Q) ≥ 0. We will use this partition of L(Q) into LD(Q) and LU(Q) in Section 4.6 to

examine the contribution of capacity uncertainty towards the total loss in welfare.

In the next section, we establish the credibility of our model and analysis by using real-

world data on (a) the procurement of a major crop under a support-price program and

(b) the other parameters we need – the total production by the farmers, the support price,

the market price, the holding cost, and the discount factor. Finally, in Section 4.6, we

illustrate how our analysis can be of help to policy-makers in taking decisions to improve

the welfare of the farmers.
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4.5 Real-World Data

Our aim in this section is to use real data to show that the predictions of our model are rea-

sonable. We use real data on the procurement of rice – which, in its unmilled form, is referred

to as paddy – in multiple districts by the government of the state of Odisha, India, under

the central government’s support-price program in 2010–11. The government’s procurement

from farmers takes place in each district, usually in its commercial capital. For illustration,

we consider the procurement in the following five districts of Odisha: Balangir, Cuttack, De-

ogarh, Jajpur, and Khurda. For each district, we use the daily procured quantities of paddy

by the state government during the five-month peak procurement season – from November 1,

2009 to March 31, 2010 – to estimate the distribution of the procurement capacities for the

same period in 2010–11 (National Informatics Center 2010). This five-month interval, which

follows the annual monsoon rains, is when the farmers sell most of their produce; about 85%

of the total annual production of paddy is available by November 1 (International Rice Re-

search Institute 2012). On average, the procurement occurs for four days in a week. Thus, a

time period corresponds to 7/4 = 1.75 days. Figure 4.1 illustrates this data for two districts.
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(a) District Balangir, Odisha (b) District Khurda, Odisha

Figure 4.1. Distribution of daily procured quantities of paddy during the peak procurement
period in 2009–10.

Using the standard Kolmogorov-Smirnov one-sample test, we verify that the exponential

distribution is a good fit for the per-period procurement capacities over the peak duration in

each district; Table 4.1 provides the mean, µ, of the exponential distribution and the p-value

for the K-S test corresponding to each district.
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Table 4.1. The mean, µ, of the exponential distribution (1 unit = 1000 kgs.) and the p-value
for the K-S test corresponding to each district.

Districts → Balangir Cuttack Deogarh Jajpur Khurda
Mean Per-Period Capacity, µ 3354.32 704.88 342.20 649.43 1037.24
p-value 0.3616 0.0700 0.2846 0.9387 0.4903

The other parameters required by our model were obtained for the 2010–11 procure-

ment season from the following publicly-available documents: Directorate of Economics and

Statistics (2010a), Planning Commission of India (2011), Directorate of Agriculture and

Food Production (2010), The Times of India (2012a,b), and NDTV (2010). A summary of

this data5 is as follows: (1) The support price (S) = Rs. 10 per kg. (2) The per-period

holding cost (h) = Rs. 2.217× 10−3 per kg. (3) The annual interest rate (β = 365(1−α)/α)

is in the range 30–60%. (4) The agent’s price (w) is in the range Rs. 8–8.5 per kg. (5) The

district-wise total production of paddy by the farmers and the total procurement of paddy

by the government for the five-month peak procurement period in 2010–11 are provided in

Table 4.2.

Table 4.2. The total production of paddy by the farmers and the total procurement of paddy
by the government for the five-month peak procurement period in 2010–11, respectively (1
unit = 10 million kgs.).

Districts → Balangir Cuttack Deogarh Jajpur Khurda
Total Quantity Produced, Q 50.488 31.136 3.793 21.976 21.446
Total Quantity Procured 23.547 5.087 1.921 3.793 7.414

4.5.1 Performance of the Approximation P̂∞

We check the performance of our approximation P̂∞ using the values outlined in the discus-

sion above, namely, the support price S, the per-period holding cost h, the annual interest

rate β, the agent’s price w, the per-period mean capacity µ, the total quantity Q produced

by the farmers and the total quantity procured by the government.

For the annual interest rate β and the agent’s price w, only realistic ranges are available.

Choosing the average values for both these parameters – namely, 45% for the annual interest

rate and Rs. 8.25 per kg. for the agent’s price – the percentage (absolute) deviations between

5Monetary values are expressed in the Indian currency – Rupees (Rs).
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the predicted and the actual volume of distressed sales for the five districts are 11.27%, 1.92%,

42.39%, 7.92%, and, 5.72%, with an average deviation of 13.84%.

Given the limitations of our data and the admittedly stylized nature of our model, we

adopt an alternative approach, which in our opinion is perhaps more practical and reasonable,

to assess the predictions of our model: We first determine the values of the model parameters –

namely, the annual interest rate β and the agent’s price w – for which the predictions are

accurate (i.e., the total predicted volume of distressed sales matches the actual value observed

in the data). Then, we check if these imputed values of the parameters fall within their

respective realistic ranges noted in publicly available reports. We now discuss this approach

in further detail.

The typical ranges for the agent’s price (about 15% to 20% below the support price)

and the annual interest rate (about 30% to 60%) define the “area of relevance” in the space

of these two parameters; this area is the shaded rectangle in Figure 4.2. For a district,

consider an annual interest rate of, say, β. Let wβ be the corresponding price of the agent

such that the total volume of distressed sales – as predicted by our model – matches the

observed value of the distressed sales in that district; wβ can be calculated by using the

closed-form expression for the optimal threshold v̂ in Theorem 12 and the above-mentioned

real-world values of the support price S, the per-period holding cost h, and the mean per-

period capacity µ. By varying β, we obtain an imputed “inference curve” defined by the

points (β, wβ) for which the predicted and the actual volume of distressed sales are equal;

Figure 4.2 shows this inference curve for each of the five districts.

For the model prediction on distressed sales to be deemed reasonable for practical data,

the inference curve for each district should intersect the area of relevance. In other words,

for a reasonable reality check, the values of the parameters (the agent’s price and the annual

interest rate) that lead to accurate predictions should lie in the area of relevance. It is

encouraging that there is, in fact, a substantial intersection of the inference curve and the

area of relevance.

4.6 Use in Policy-Making

To policy-makers targeting a reduction in distressed sales, the direction in which each of its

main determinants should change is clear: the procurement capacity should increase and its

variability should decrease, the interest rates on the credit available to the farmers should

decrease, and the cost the farmers incur in holding their produce should decrease. Given the



www.manaraa.com

51

����
����
����

����
����
����

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 0  10  20  30  40  50  60  70  80  90  100

Annual Interest Rate

A
ge

nt
’s

 P
ri

ce
 (

in
 R

up
ee

s 
Pe

r 
kg

.) Deogarh
Jajpur
Khurda

Bolangir
Cuttack

Area of Relevance

Five Inference Curves

Figure 4.2. Performance of the approximation P̂∞: The shaded region represents the “area
of relevance” in the space of the agent’s price and the annual interest rate. The collection
of points represent imputed “inference curves” (one for each district).

scale of the agricultural sector in most developing countries, each of these improvements re-

quires a significant capital investment. Further, these improvements require widely-differing

infrastructural changes and the corresponding costs too can vary significantly across coun-

tries and regions; e.g., targeting an improved procurement mechanism poses challenges that

are quite unlike those encountered in improving the nationwide storage infrastructure. As-

suming that a modest budget is available for such improvements, it is then reasonable for

policy-makers to aim for marginal improvements in one or more areas. In this context, an

important use of our analysis can be in assessing the relative impacts of multiple and simul-

taneous improvements in the factors that affect distressed sales. We illustrate this below.

Consider, for example, improvements in the procurement capacity and the annual interest

rate. Figure 4.3(a) uses Theorem 12 to show how the welfare of the farmers increases as a

result of improvements in these two factors; the base case (0, 0, 0) in this figure corresponds

to the following realistic choice of the parameters: the total quantity produced, Q = 250

million kgs.; the support price, S = Rs. 10 per kg.; the agent’s price, w= Rs. 8.5 per kg.;

the annual interest rate, β = 25%; the per-period holding cost, h = Rs. 2.217×10−3 per kg.;

and the mean per-period procurement capacity, µ = 0.25 million kgs. Figure 4.3(b) is the

corresponding contour-plot representing isolines of the improvement in the loss in welfare

of the farmers as a function of the mean procurement capacity and the annual interest

rate. For a given improvement in the loss in welfare of the farmers, the contours provide

various “equivalent” combinations of improvements in the mean capacity and the annual
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Figure 4.3. Improvement in the loss in welfare (L(Q)) of the farmers with respect to changes
in the annual interest rate (β) and the mean per-period capacity (µ).

interest rate. For example, (i) a 10% increase in the mean per-period procurement capacity

and a 30% reduction in the annual interest rate is equivalent to (ii) a 17% increase in that

capacity and a 24% reduction in that interest rate, in the sense that both these combinations

result in a 4% improvement in the loss in welfare of the farmers. The costs corresponding

to these equivalent combinations, however, could be different. Thus, given the available

budget, policy-makers can choose the best target improvement and the best combination to

achieve it. Similarly, Figure 4.4(a) and 4.4(b) can be used to identify an ideal combination

of improvements in the holding cost and the annual interest rate.

To further illustrate the discussion above, consider the following two improvement schemes

that might be of interest to planners: (a) Procuring directly from small farmers in remote cor-

ners of the country by reaching out to them at the time of harvest, paying them immediately

at the support price, and owning their produce. Thus, these farmers need not travel to the

GPCs to sell their crops and the government assumes responsibility of the temporary storage

and transport of the procured quantity to the GPCs; in India, for instance, the government

is providing incentives to construct rural godowns for improving the storage infrastructure

(Directorate of Marketing and Inspection 2015). (b) Increasing access to affordable credit

for small farmers via improved budgetary allocations to village cooperatives and other rural
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Figure 4.4. Improvement in the loss in welfare (L(Q)) of the farmers with respect to changes
in the annual interest rate (β) and the holding cost (h).

financial institutions. The first scheme is essentially an attempt to increase the government’s

procurement capacity while the second can improve the discount rate for the farmers. Our

analysis provides a simple tool for policy-makers to compare a variety of combinations of the

marginal improvements through these two schemes.

Our analysis of the impact of variability in the procurement capacity at the GPCs on

the loss in welfare of the farmers can also be useful in policy decisions. Recall our discussion

in Section 4.4.4, where we divided the total loss in welfare (L(Q)) of the farmers into two

components: (a) The loss in welfare due to limited but certain capacity (LD(Q)) and (b) The

loss in welfare due to uncertain capacity (LU(Q)). Figure 4.5(a) shows the total loss in welfare

and the loss in welfare due to limited but certain capacity, both as functions of the mean per-

period capacity. Thus, the shaded-area between the two curves represents the loss in welfare

of the farmers due to uncertain capacity. Figure 4.5(b) shows the percentage contribution

of the uncertainty in capacity towards the total loss in welfare (100 × LU(Q)/L(Q)), as a

function of the mean per-period capacity. When the capacity of the GPCs is small, it is

clear that the loss in welfare of the farmers can be attributed almost entirely to the limited

capacity. However, when the capacity is high, the uncertainty in capacity plays a significant

role: approximately 10% of the loss in welfare is due to uncertainty in capacity. The ability
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Figure 4.5. Illustrating the differentiation between the loss in welfare of farmers due to limited
but certain capacity (LD(Q)) and uncertain capacity (LU(Q)). This figure corresponds to
the following choice of the parameters: the total quantity produced, Q = 250 million kg.;
the support price, S = Rs. 10 per kg.; the agent’s price, w= Rs. 9.5 per kg., the interest
rate, β = 50%, and the per-period holding cost, h = Rs. 2.217× 10−3 per kg.

to assess this impact via a simple, closed-form expression can be useful to policy-makers in

making investments targeted at reducing the variability in the procurement capacity.

4.7 Conclusion and Future Research Directions

There is considerable interest among policymakers to alleviate the unfortunate practice of

distressed selling by farmers in developing economies. Our attempt in this chapter has been

to understand the role of the main factors – namely, the limited and uncertain procurement

capacity of the government, the high holding cost incurred by the farmers, and the lack

of affordable credit available to the farmers – that lead to this practice. To this end, our

tractable model offers closed-form expressions for several quantities of interest; e.g., the

total volume of distressed sales and the loss in welfare of the farmers. These, in turn, allow

policymakers to compare the relative benefits of different infrastructural improvements that

could potentially reduce distressed selling. Thus, given the status quo, policymakers can

identify and target the most influential improvements.

Our work on distressed selling by farmers can be extended in several directions. In our

model, we make several modeling assumptions that keep the analysis tractable and help
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us achieve closed-form expressions for several quantities. Here, we discuss several realistic

scenarios under which such assumptions may not hold and warrant further analysis: (1)

There are multiple (heterogenous) farmers and multiple GPCs; each farmer makes his own

decision in response to the decisions made by the remaining farmers. (2) Farmers are risk-

averse, (3) The procurement capacities of the GPCs are correlated over time.
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APPENDIX A

PROOFS FOR CHAPTER 2

Proof of Claim 1: Let GM(N , f) denote the mechanism in Goel et al. (2012). Recall from

our discussion in Section 2.3.1 on the connection between GM(N , f) and DM(N , f) that the

two mechanisms are identical, except for the difference in the definitions of the price meters.

Moreover, GM(N , f) is an efficient mechanism, i.e., it results in an allocation vector that

solves the following optimization problem:

min
Q

N∑
i=1

ciQi

s.t. Q ∈ Pf ,
N∑

i=1

Qi = f(N ).

In both mechanisms, the allocations given to the suppliers depend only on the sequence

in which the suppliers leave. Let ΠGM(c) = (ΠGM
1 , ΠGM

2 , . . . , ΠGM
N ) be the sequence in

which suppliers leave in GM(N , f), where ΠGM
i is the index of the supplier who is the ith

one to leave. Analogously, let ΠDM(c) = (ΠDM
1 , ΠDM

2 , . . . , ΠDM
N ) be the sequence in which

the suppliers leave in DM(N , f). Let Q(ΠGM(c)) be the allocation vector in GM(N , f)

corresponding to the sequence ΠGM(c) and let Q(ΠDM(c)) be the allocation vector in DM(N ,

f) corresponding to the sequence ΠDM(c).

Goel et al. (2012) show that in GM(N , f), each supplier has a dominant strategy to

exit when the price meter hits his unit cost. Thus, ΠGM
i is the index of the supplier with

the (N − i + 1)st-lowest unit cost. They also show that the function f̂ in Step 3 of GM(N ,

f) remains submodular and non-decreasing. Therefore, the function f̂ in Step 3 of DM(N ,

f) also remains submodular and non-decreasing. Since f̂ is non-decreasing, the incremental

awards made in DM(N , f) are non-negative. Using this fact, it is easy to see that it is a

dominant strategy in DM(N , f) for each supplier to exit when his own price meter hits his

unit cost (see also the related discussion in Chapter 1). This observation and the definition

of our price meters imply that ΠDM
i is the index of the supplier with the (N − i + 1)st-

lowest virtual-cost. Hence, ΠDM(c) = ΠGM(ψ(c)) for any c. Using the facts that Q(ΠGM(·))

56
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is an efficient allocation rule and ΠDM(·) = ΠGM(ψ(·)), it follows that Q(ΠDM(c)) solves

MR-PM(c). This completes the proof of Claim 1. ¥

Proof of Claim 2: The total expected payment in (Q∗,M∗) is
∑N

i=1 Eci
m∗

i (ci), where

m∗
i (ci) = Ec−i

[M∗
i (c)] for all i, ci ∈ [ci, c̄i]. We show that DM(N , f) achieves the same

total expected payment. While DM(N , f) is not a direct mechanism (i.e., suppliers are not

directly asked to report their costs), we know from the Revelation Principle that there exists

a direct revelation (incentive compatible) mechanism (Q̂, M̂) that achieves the same outcome

as DM(N , f). Since (Q̂, M̂) and (Q∗,M∗) are both incentive compatible mechanisms with

identical allocations (Claim 1), we know from the Revenue Equivalence Theorem; see, e.g.,

Proposition 5.2 of Krishna (2002), that m∗
i (ci)−m̂i(ci) = m∗

i (c̄i)−m̂i(c̄i) for all i, ci ∈ [ci, c̄i],

where m̂i(ti) = Ec−i
[M̂i(ti, c−i)] for any ti ∈ [ci, c̄i]. Next, observe that m∗

i (c̄i) = c̄iq
∗
i (c̄i),

where q∗i (c̄i) = Ec−i
[Q∗

i (c̄i, c−i)]. Finally, from the definition of DM(N , f), it is easy to

see that m̂i(c̄i) = c̄iq̂i(c̄i), where q̂i(c̄i) = Ec−i
[Q̂i(c̄i, c−i)]. Since Q̂(·) = Q∗(·), we have

m̂i(ci) = m∗
i (ci) for all i and ci ∈ [ci, c̄i]. Thus, the total expected payment in DM(N , f) is∑N

i=1 Eci
m̂i(ci) =

∑N
i=1 Eci

m∗
i (ci). ¥

Proof of Claim 3: Consider an arbitrary set N of suppliers, cost vector c, quantity Q,

individual capacities Γ and group capacities η. Let the suppliers be indexed such that

ψ1(c1) ≤ ψ2(c2) ≤ . . . ≤ ψN(cN). We first prove a sequence of results in Claims 3-A to 3-C.

These results will then be used to prove Claims 3-D and 3-E; these two claims will complete

the proof of Claim 3.

Definition 1 (Schrijver 2003): A set function f on N is non-decreasing if for any subset

S ⊆ N and an element s ∈ N \ S, we have f(S ∪ {s}) ≥ f(S).

Definition 2 (Schrijver 2003): A set function f on N is submodular if and only if f(S ∪
{s})− f(S) ≥ f(S ∪ {s, t})− f(S ∪ {t}) for any subset S ⊆ N and distinct s, t ∈ N \ S.

Claim 3-A: Define a set function g on N as follows:

g(S) =
M∑

k=1

min

(∑
j∈Sk

Γj, ηk

)
+

∑

j∈S0

Γj, ∀S ⊆ N , (A.1)

where Sk = S ∩Gk for all k and S0 = S ∩G0. Then g is non-decreasing and submodular.

Proof of Claim 3-A: We use Definition 1 to show that g is non-decreasing. Consider an

arbitrary subset Ŝ ⊆ N and an element ŝ ∈ N \ Ŝ. Let Ŝk = Ŝ ∩ Gk for all k ∈ M and

Ŝ0 = Ŝ ∩G0. We have the following cases:
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• If ŝ ∈ Gk for some k ∈ M, then g(Ŝ ∪ {ŝ}) − g(Ŝ) = min{∑j∈Ŝk∪{ŝ} Γj, ηk} −
min{∑j∈Ŝk

Γj, ηk}, which takes one the following three possible values:

g(Ŝ ∪ {ŝ})− g(Ŝ) =





Γŝ,
∑

j∈Ŝk∪{ŝ} Γj < ηk,

ηk −
∑

j∈Ŝk
Γj,

∑
j∈Ŝk∪{ŝ} Γj ≥ ηk >

∑
j∈Ŝk

Γj,

0, ηk ≤
∑

j∈Ŝk
Γj.

(A.2)

Clearly, g(Ŝ ∪ {ŝ})− g(Ŝ) ≥ 0.

• If ŝ ∈ G0, then g(Ŝ ∪ {ŝ})− g(Ŝ) = Γŝ ≥ 0.

Thus, g is non-decreasing. We now use Definition 2 to show that g is submodular. Consider

an arbitrary subset Ŝ ⊆ N and distinct ŝ, t̂ ∈ N \ Ŝ. We have the following cases:

• Suppose that ŝ ∈ Gk for some k ∈M. Consider the following scenarios:

◦ If ηk ≤
∑

j∈Ŝk
Γj, then g(Ŝ ∪ {ŝ, t̂})− g(Ŝ ∪ {t̂}) = g(Ŝ ∪ {ŝ})− g(Ŝ) = 0.

◦ If
∑

j∈Ŝk∪{ŝ} Γj ≥ ηk >
∑

j∈Ŝk
Γj, then g(Ŝ ∪{ŝ, t̂})−g(Ŝ ∪{t̂}) ≤ ηk−

∑
j∈Ŝk

Γj =

g(Ŝ ∪ {ŝ})− g(Ŝ).

◦ If
∑

j∈Ŝk∪{ŝ} Γj < ηk, then using the observation that g(S ∪ {s}) − g(S) ≤ Γs,

for any S ⊆ N and s ∈ N \ S, we have g(Ŝ ∪ {ŝ, t̂}) − g(Ŝ ∪ {t̂}) ≤ Γŝ =

g(Ŝ ∪ {ŝ})− g(Ŝ).

• If ŝ ∈ G0, then g(Ŝ ∪ {ŝ})− g(Ŝ) = g(Ŝ ∪ {ŝ, t̂})− g(Ŝ ∪ {t̂}) = Γŝ.

The submodularity of the function g follows. ¤

Using the definition of the functions fc in (2.5) and g in (A.1), we have fc(S) = min{Q, g(S)}
for all S ⊆ N .

Claim 3-B: The function fc is submodular and non-decreasing.

Proof of Claim 3-B: Using Claim 3-A, we know that g is submodular and non-decreasing.

That the function fc is submodular, given that g is submodular, is established in Schrijver

(2003), Section 44.6e. It is easy to see that fc is non-decreasing. Consider any two sets T
and S such that T ⊆ S ⊆ N . Since g is non-decreasing, we have g(T ) ≤ g(S). Also, by

definition, fc(T ) ≤ g(T ) and fc(T ) ≤ Q. Thus, fc(T ) ≤ min{Q, g(S)} = fc(S), establishing

that fc is non-decreasing. ¤

Claim 3-C: The feasible region of M-PM(fc) is identical to that of M-CGP.
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Proof of Claim 3-C: We will first show that the feasible region of M-PM(fc) is a subset of

that of M-CGP. Consider an arbitrary feasible solution (Q,M) to M-PM(fc). To see that

this solution is also feasible to M-CGP, we make the following observations:

• Since (Q,M) is feasible to M-PM(fc), it must be incentive compatible and individually

rational.

• Let g be the function defined in (A.1). The total quantity procured in (Q,M) is fc(N )

units. Using g(N ) ≥ Q (Section 2.1), we have fc(N ) = Q. Thus, the constraint∑N
i=1 Qi = Q is satisfied.

• To show that the allocation vector Q satisfies the group capacity constraints, consider

an arbitrary group Gk, k ∈M and let Ŝ = Gk. Since (Q,M) is feasible to M-PM(fc),

we have
∑

i∈Ŝ Qi ≤ fc(Ŝ) = min{Q, g(Ŝ)} ≤ g(Ŝ). Using the definition of g in (A.1)

and our assumption that the groups Gk, for all k ∈ M and G0 are disjoint, we have

g(Ŝ) = min{∑i∈Gk
Γi, ηk} ≤ ηk. Thus, the constraint

∑
i∈Gk

Qi ≤ ηk is satisfied.

• To show that the allocation vector Q satisfies the individual capacity constraints,

consider an arbitrary Supplier i. Since (Q,M) is feasible to M-PM(fc), we have Qi ≤
fc({i}) = min{Q, g({i})} ≤ g({i}). If Supplier i ∈ G0, then Qi ≤ g({i}) = Γi. If

Supplier i ∈ Gk for some k ∈ M, then Qi ≤ g({1}) = min{Γi, ηk} ≤ Γi. Thus, the

constraint Qi ≤ Γi is satisfied.

We complete the proof of the claim by showing that the feasible region of M-CGP is

a subset of that of M-PM(fc). Consider an arbitrary feasible solution (Q,M) to M-CGP.

To see that this solution is also feasible to M-PM(fc), we first make the following observa-

tions: (1) (Q,M) is incentive compatible and individually rational, and (2) the constraint∑N
i=1 Qi = fc(N ) is satisfied. Thus, it only remains to show that the allocation vector Q sat-

isfies the feasibility constraints Pfc . Suppose, to aim for a contradiction, that ∃Ŝ ⊆ N such

that
∑

i∈Ŝ Qi > fc(Ŝ). By definition, fc(Ŝ) = min{Q, g(Ŝ)}. Recall that Ŝk = Ŝ ∩ Gk,

for all k ∈ M and Ŝ0 = Ŝ ∩ G0. If fc(Ŝ) = Q, then we have a contradiction since

the total units awarded in Q is Q. If fc(Ŝ) = g(Ŝ), then
∑

j∈Ŝ Qj > fc(Ŝ) implies that
∑M

k=1

∑
j∈Ŝk

Qj +
∑

j∈Ŝ0 Qj >
∑M

k=1 min
(∑

j∈Ŝk
Γj, ηk

)
+

∑
j∈Ŝ0 Γj. By assumption, the al-

location vector Q satisfies the feasibility constraints imposed in M-CGP. Therefore, Qj ≤ Γj,

for all j ∈ N and
∑

j∈Gk
Qj ≤ ηk, for all k ∈ M. This along with definitions of Ŝ0 and

Ŝk, for all k ∈ M, together imply that
∑

j∈Ŝk
Qj ≤ min

(∑
j∈Ŝk

Γj, ηk

)
, for all k ∈ M
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and
∑

j∈Ŝ0 Qj ≤
∑

j∈Ŝ0 Γj. Thus,
∑

i∈Ŝ Qi ≤
∑M

k=1 min
(∑

j∈Ŝk
Γj, ηk

)
+

∑
j∈Ŝ0 Γj, again a

contradiction. The claim follows. ¤

Claim 3-D: The mechanism DM(N , fc) results in an optimal solution to M-CGP.

Proof of Claim 3-D: The proof of this claim follows immediately from Claim 3-C, the ob-

servation that problems M-PM(fc) and M-CGP have identical objective functions (namely,

minimizing the total expected payment given to the suppliers), and the optimality of DM(N ,

fc) for problem M-PM(fc) (Theorem 3). ¤

Let DM-MCGP(N , Q, Γ, η) be the descending mechanism in Section 2.1.2, where Q is

the quantity that the buyer wants to procure from the suppliers in the set N with individual

capacities Γ and group capacities η.

Claim 3-E: The incremental awards made in DM(N , fc) and DM-MCGP(N , Q, Γ, η) are

identical.

Proof of Claim 3-E: We use induction on the number of suppliers N . For the base case of

a single supplier, it is easy to see that the awards given to this supplier in DM(N , fc) and

DM-MCGP(N , Q, Γ, η) are fc({1}) and Q, respectively. Since fc({1}) = min{Q, Γ1} and

Γ1 ≥ Q, these awards are identical.

Consider now the case of N ≥ 2 suppliers. In DM(N , fc), setting N̂ = N , f̂ = fc and

Qi = 0 for all i ∈ N̂ , the buyer makes an award of δ1
i = fc(N ) − fc(N \ {i}) to Supplier

i ∈ N . On the other hand, in DM-MCGP(N , Q, Γ , η), the award given to Supplier

i ∈ N is δ2
i = max{0, NEED − TRCwSi}, where NEED = Q and TRCwSi = g(N \ {i})

with the function g defined in (A.1). Using the definition of fc in (2.5) and the assumption

g(N ) ≥ Q in Section 2.1, we have fc(N ) = NEED and fc(N \ {i}) = min{Q, g(N \
{i})} = min{NEED, TRCwSi}. Thus, it is easy to see that δ1

i = δ2
i for all i ∈ N . After

these awards are made in DM(N , fc), the buyer updates f̂(S) = fc(S) − Q(S), where

Q(S) =
∑

j∈S Qj, for all S ⊆ N . On the other hand, in DM-MCGP(N , Q, Γ , η), the

buyer updates NEED = Q−Q(N ), RCi = Γi−Qi, for all i ∈ N , and RCGl = ηl −Q(Gl),

for all l ∈ M. Since f̂(N ) = Q − Q(N ) = NEED, these two mechanisms either both end

(this happens when NEED = 0) or both continue. The proof of Claim 3-E follows trivially

when both mechanisms end. We now consider the case when both mechanisms continue. In

particular, in both mechanisms, the buyer reduces the price meters until a supplier leaves.

From the proof of Claim 1 and the trivial identification of dominant strategies in Chapter 1,

we know that the suppliers exit in the sequence of their virtual-costs in both DM(N , fc)

and DM-MCGP(N , Q, Γ, η). Thus, in both mechanisms, the updated set of suppliers N̂
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is given by N̂ = {1, 2, . . . , N − 1}. Define Γ̂i = RCi, for all i ∈ N and η̂k = RCGk, for all

k ∈ M. Let Γ̂ = (Γ̂1, Γ̂2, . . . , Γ̂N) and η̂ = (η̂1, η̂2, . . . , η̂M). We will complete the proof of

Claim 3-E by showing that the incremental awards made in DM(N̂ , f̂) and DM-MCGP(N̂ ,

Q−Q(N ), Γ̂, η̂) are identical.

Consider an arbitrary subset S ⊆ N . Recall that Sk = S ∩ Gk, for all k ∈ M, and

S0 = S ∩G0. Define the set functions ĝ and f̂c on N as follows:

ĝ(S) =
M∑

k=1

min

(∑
j∈Sk

Γ̂j, η̂k

)
+

∑

j∈S0

Γ̂j, ∀S ⊆ N .

f̂c(S) = min {Q−Q(N ), ĝ(S)} , ∀S ⊆ N .

Note that the function f̂c satisfies (2.5) for the total procurement quantity Q − Q(N ),

individual capacity vector Γ̂, and group capacity vector η̂. Moreover, using the fact that

the mechanism DM(N , fc) results in an optimal solution to M-CGP (Claim 3-D) and the

observations that ĝ(N̂ ) is the total residual capacity of the set N̂ of suppliers, and the

quantity Q−Q(N ) is the additional need of the buyer, we have ĝ(N̂ ) ≥ Q−Q(N ). Consider

the mechanism DM(N̂ , f̂c) with the set of suppliers N̂ and set function f̂c. By our induction

hypothesis, the incremental awards made in DM(N̂ , f̂c) and DM-MCGP(N̂ , Q−Q(N ), Γ̂,

η̂) are identical. To complete the proof, it remains to show that the incremental awards

made in DM(N̂ , f̂) and DM(N̂ , f̂c) are identical; in other words, that the functions f̂ and

f̂c are identical.

Recall that the function f̂(S) = fc(S)−Q(S), for all S ⊆ N . This can be re-written as

f̂(S) = min{Q−Q(S), g(S)−Q(S)}, for all S ⊆ N . By definition, ĝ(N ) = g(N )−Q(N ).

As a result, f̂c(N ) = min{Q − Q(N ), g(N ) − Q(N )} = f̂(N ) = Q − Q(N ). Consider now

an arbitrary subset Ŝ ⊂ N and the following cases:

1. g(Ŝ) ≥ Q:

Consider an arbitrary Supplier i ∈ N \ Ŝ. Since g is non-decreasing (Claim 3-A),

g(N \ {i}) ≥ g(Ŝ) ≥ Q. Thus, Qi = fc(N ) − fc(N \ {i}) = 0. As a result, ĝ(Ŝ) =

g(Ŝ)−Q(Ŝ) and Q(N ) = Q(Ŝ); thus establishing f̂c(Ŝ) = f̂(Ŝ).

2. g(Ŝ) < Q:

In this case, f̂(Ŝ) = g(Ŝ) − Q(Ŝ). To prove f̂(Ŝ) = f̂c(Ŝ), we will show that ĝ(Ŝ) =

g(Ŝ)−Q(Ŝ) and Q−Q(N ) ≥ ĝ(Ŝ). Recall that ĝ(Ŝ) and g(Ŝ)−Q(Ŝ) are as follows:

ĝ(Ŝ) =
M∑

k=1

min


∑

j∈Ŝk

Γ̂j, ηk −Q(Gk)


 +

∑

j∈Ŝ0

Γ̂j,
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g(Ŝ)−Q(Ŝ) =
M∑

k=1

min


∑

j∈Ŝk

Γ̂j, ηk −Q(Ŝk)


 +

∑

j∈Ŝ0

Γ̂j.

We show that the equality min
(∑

j∈Ŝk
Γ̂j, ηk −Q(Gk)

)
= min

(∑
j∈Ŝk

Γ̂j, ηk −Q(Ŝk)
)

holds, for any k = 1, 2, . . . , M . Consider an arbitrary k ∈M and the following cases:

• ∑
j∈Ŝk

Γj ≥ ηk:

Consider an arbitrary Supplier i ∈ Gk \ Ŝk. The award given to this supplier

is Qi = fc(N ) − fc(N \ {i}). Since
∑

j∈Gk\{i} Γj ≥
∑

j∈Ŝk
Γj ≥ ηk, we have

g(N \{i}) = g(N ) ≥ Q. Thus, fc(N \{i}) = fc(N ) = Q; and hence Qi = 0. Con-

sequently, we have min
(∑

j∈Ŝk
Γ̂j, ηk −Q(Gk)

)
= min

(∑
j∈Ŝk

Γ̂j, ηk −Q(Ŝk)
)

=

ηk −Q(Ŝk).

• ∑
j∈Ŝk

Γj < ηk:

We will first show that Q(Gk \ Ŝk) ≤ ηk −
∑

j∈Ŝk
Γj. As a consequence of this re-

sult, we will have min
(∑

j∈Ŝk
Γ̂j, ηk −Q(Gk)

)
= min

(∑
j∈Ŝk

Γ̂j, ηk −Q(Ŝk)
)

=
∑

j∈Ŝk
Γ̂j. To prove Q(Gk\Ŝk) ≤ ηk−

∑
j∈Ŝk

Γj, note that Qj = fc(N )−fc(N\{j})
for all j ∈ Gk \ Ŝk and g(N ) − g((N \ Gk) ∪ Ŝk) ≤ ηk −

∑
j∈Ŝk

Γj. Using

the submodularity of the function fc (Claim 3-B), we have
∑

j∈Gk\Ŝk
[fc(N ) −

fc(N \ {j})] ≤ fc(N ) − fc((N \ Gk) ∪ Ŝk). Moreover, by the definition of

fc, we have fc(N ) − fc((N \ Gk) ∪ Ŝk) = Q − min{Q, g((N \ Gk) ∪ Ŝk)}. If

g((N \ Gk) ∪ Ŝk) ≥ Q, then Q(Gk \ Ŝk) ≤ 0 < ηk −
∑

j∈Ŝk
Γj. Otherwise,

Q(Gk \ Ŝk) ≤ Q− g((N \Gk)∪ Sk) ≤ g(N )− g((N \Gk)∪ Sk) ≤ ηk −
∑

j∈Ŝk
Γj.

Thus, min
(∑

j∈Ŝk
Γ̂j, ηk −Q(Gk)

)
= min

(∑
j∈Ŝk

Γ̂j, ηk −Q(Ŝk)
)

for all k. As a re-

sult, ĝ(Ŝ) = g(Ŝ)−Q(Ŝ). We will now show that Q−Q(N ) ≥ ĝ(Ŝ). From the proof of

Claim 1, we know that f̂ is non-decreasing. Thus, f̂(N ) ≥ f̂(Ŝ) = g(Ŝ)−Q(Ŝ) = ĝ(Ŝ).

Since f̂(N ) = Q−Q(N ), we have Q−Q(N ) ≥ ĝ(Ŝ); establishing f̂(Ŝ) = f̂c(Ŝ).

This completes the proof of Claim 3-E. ¤

The proof of Claim 3 follows as a consequence of Claims 3-D and 3-E. ¥

Proof of Claim 4: Consider an arbitrary set N of suppliers, cost vector c, quantity Q, and

the parameters a, b, NL, and NH , defined in Section 2.2. Let the suppliers be indexed such

that ψ1(c1) ≤ ψ2(c2) ≤ . . . ≤ ψN(cN). Let DM-MBR(N , Q, a, b, NL, NH) be the descending

mechanism in Section 2.2.2. We first prove three preliminary results in Claims 4-A, 4-B,
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and 4-C. These results will then be used to prove Claims 4-D and 4-E; these two claims will

complete the proof of Claim 4.

Claim 4-A: The set function fb is non-decreasing and submodular.

Proof of Claim 4-A: Consider sets A and B such that A ⊆ B ⊆ N . Since 1 − a(L − |S|)+

is a non-decreasing function of |S|, we have fb(A) = Q min
{
b|A|, 1 − a(L − |A|)+

} ≤
Q min

{
b|B|, 1 − a(L − |B|)+

}
= fb(B); thus fb is non-decreasing. Define the function u :

N → R+ as follows: u(|S|) = fb(S) for all S ⊆ N . To prove that fb is submodular, we use the

following result: fb is submodular if u is concave in |S|; see Proposition 1.1 in Lovàsz (1983).

The fact that u(|S|) is concave in |S| follows from the observations that 1− a(L − |S|)+ is

concave in |S| and the minimum of a linear and a concave function is concave. ¤
Claim 4-B: The feasible region of M-PM(fb) is a superset of the feasible region of M-BR.

Proof of Claim 4-B: Consider an arbitrary feasible solution (Q,M) to M-BR. To show that

this solution is also feasible to M-PM(fb), we make the following observations:

• Since (Q,M) is feasible to M-BR, it must be incentive compatible and individually

rational.

• The total quantity procured in (Q,M) is Q units. Since fb(N ) = Q, the constraint∑N
i=1 Qi = fb(N ) is satisfied.

• To show that the allocation vector Q satisfies the feasibility constraints Pfb
, assume –

to aim for a contradiction – that ∃Ŝ ⊆ N such that
∑

i∈Ŝ Qi > fb(Ŝ). We consider the

following cases:

◦ b|Ŝ| ≤ 1− a(L− |Ŝ|)+:

We have fb(Ŝ) = Qb|Ŝ| and thus,
∑

i∈Ŝ Qi > Qb|Ŝ|. Since (Q,M) is feasible to

M-BR, we have Qi ≤ Qb for all i ∈ N . This contradicts
∑

i∈Ŝ Qi > Qb|Ŝ|.
◦ b|Ŝ| > 1− a(L− |Ŝ|)+ and |Ŝ| > L:

We have fb(Ŝ) = Q and thus,
∑

i∈Ŝ Qi > Q. This contradicts the fact that the

total quantity procured in (Q,M) is Q units.

◦ b|Ŝ| > 1− a(L− |Ŝ|)+ and |Ŝ| ≤ L:

Let W be the set of suppliers who receive a strictly positive allocation in (Q,M).

Let W−Ŝ = W \ (W∩Ŝ). We have fb(Ŝ) = Q−Qa(L−|Ŝ|) and thus,
∑

i∈Ŝ Qi >

Q − Qa(L − |Ŝ|). Since (Q,M) is feasible to M-BR, we have
∑

i∈W−Ŝ
Qi ≥

aQ|W−Ŝ |. Also, using the definition of L in Section 2.2, we have |W−Ŝ | ≥ L−|Ŝ|.
Thus,

∑
i∈W−Ŝ

Qi ≥ aQ(L − |Ŝ|). Since
∑

i∈W−Ŝ
Qi +

∑
i∈Ŝ Qi = Q, we have

∑
i∈Ŝ Qi ≤ Q− aQ(L− |Ŝ|), a contradiction.
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The result now follows. ¤

Claim 4-C: Consider a submodular and non-decreasing set function f on the set N . The

mechanism DM(N , f) results in a cumulative allocation of f({1, 2, . . . , i})− f({1, 2, . . . , i−
1}) units to Supplier i, for all i ∈ N .

Proof of Claim 4-C: We use induction on the number of suppliers N . For the base case of

a single supplier (i.e., N = 1), it is trivial to see that the descending mechanism awards

f({1})− f(∅) units to that supplier. Consider now the case when the number of suppliers is

N ≥ 2. After the initialization in Step 2, the award given to Supplier i in Step 3 of DM(N ,

f) is δi = f(N ) − f(N \ {i}); i = 1, 2, . . . , N . After these awards are made, the buyer

updates f̂(S) = f(S)−∑
j∈S δj, for all S ⊆ N . Consider the following cases:

• f̂(N ) = 0: In this case, the buyer concludes the auction. We show that δi =

f({1, 2, . . . , i})−f({1, 2, . . . , i−1}) for all i ∈ N . From the proof of Claim 1, we know

that f̂ is submodular and non-decreasing. This along with the facts that f(∅) = 0 and

f̂(N ) = 0, imply that f̂({1, 2, . . . , i}) = 0; and hence, f({1, 2, . . . , i}) =
∑i

j=1 δj for all

i. Thus, δi = f({1, 2, . . . , i})− f({1, 2, . . . , i− 1}), ∀i.

• f̂(N ) > 0: In this case, the buyer continues the auction by reducing the price meters

until a supplier exits. From the proof of Claim 1, we know that suppliers exit in the

decreasing order of their virtual-costs. Thus, Supplier N is the first supplier who exits

the auction. Using our induction hypothesis, the mechanism DM({1,2,. . . ,N−1}, f̂)

results in an allocation vector ∆ = (∆1, ∆2, . . . , ∆N−1), with ∆i = f̂({1, 2, . . . , i}) −
f̂({1, 2, . . . , i−1}) for all i = 1, 2, . . . , N−1. Define Q = (Q1, Q2, . . . , QN), where Qi =

δi + ∆i for all i = 1, 2, . . . , N − 1 and QN = δN = f({1, 2, . . . , N})− f({1, 2, . . . , N −
1}). To complete the proof of our claim, we note that DM(N , f) results in the

allocation vector Q and show that Qi = f({1, 2, . . . , i}) − f({1, 2, . . . , i − 1}) for all

i = 1, 2, . . . , N − 1. Consider the allocation to an arbitrary Supplier i, 1 ≤ i ≤ N − 1:

Qi = δi + ∆i = δi + f̂({1, 2, . . . , i})− f̂({1, 2, . . . , i− 1}),

= δi + f({1, 2, . . . , i})−
i∑

j=1

δj − f({1, 2, . . . , i− 1}) +
i−1∑
j=1

δj,

= δi + f({1, 2, . . . , i})− δi − f({1, 2, . . . , i− 1}),
= f({1, 2, . . . , i})− f({1, 2, . . . , i− 1}).

This completes our proof of Claim 4-C. ¤
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Claim 4-D: The descending mechanism DM(N , fb) results in an optimal solution to M-BR.

Proof of Claim 4-D: We first show that DM(N , fb) provides a feasible solution to M-BR. In

other words, it satisfies the following constraints: (1) It is an incentive compatible and an

individually rational mechanism. (2) The total allocation given to the suppliers is Q. (3)

Each supplier either receives an allocation of 0 or an allocation in the range [aQ, bQ]. (4)

The number of winning suppliers, i.e., those receiving strictly positive allocations, is between

NL and NH . We make the following observations about the mechanism DM(N , fb):

• By Claim 4-A, we know that fb is submodular and non-decreasing. Thus, by Theorem 3,

DM(N , fb) is an optimal solution to M-PM(fb). Therefore, it is incentive compatible

and individually rational.

• Recall from Section 2.2 that L is the smallest value of n ∈ {NL, NL + 1, . . . , NH} such

that (aQ)n ≤ Q ≤ (bQ)n. Also, K = b1−aL
b−a

c and β = 1− aL− (b− a)K. This, along

with the definition of fb in (2.6), implies the following:

fb(S) =





bQ|S|, |S| = 1, 2, . . . , K,

Q− aQ(L− |S|), |S| = K + 1, K + 2, . . . , L,

Q, |S| = L + 1, L + 2, . . . , N.

(A.3)

Using Claim 4-C, the mechanism DM(N , fb) results in an allocation vector Q, where

the total allocation given to Supplier i is Qi = fb({1, 2, . . . , i}) − fb({1, 2, . . . , i − 1}).
Using (A.3), we have:

Qi =





bQ, i ∈ {1, 2, . . . , K},
aQ + βQ, i = K + 1,

aQ, i ∈ {K + 2, K + 3, . . . , L},
0, i ∈ {L + 1, L + 2, . . . , N}.

That is, (i) each of the K lowest-virtual-cost suppliers receives the maximum allocation

of bQ, (ii) the (K +1)st lowest-virtual-cost supplier receives an intermediate allocation,

and (iii) each of the next [L−(K+1)] lowest-virtual-cost suppliers receives the minimum

allocation of aQ. It is easy to verify that the total allocation given to the suppliers

equals Q. Moreover, the allocation vector Q satisfies the business rules specified by

the parameters a, b, NL, and NH .
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Thus, DM(N , fb) results in a feasible solution to M-BR. This property, the optimality

of DM(N , fb) for problem M-PM(fb) (Theorem 3), Claim 4-B, and the observation that

problems M-PM(fb) and M-BR have identical objective functions (namely, minimizing the

total expected payment given to the suppliers), together imply that DM(N , fb) is an optimal

solution to M-BR. ¤

Claim 4-E: The incremental awards made in DM(N , fb) and DM-MBR(N , Q, a, b, NL, NH)

are identical.

Proof of Claim 4-E: From the proof of Claim 1 and the trivial identification of dominant

strategies in Chapter 1, we know that the suppliers exit in the decreasing order of their

virtual costs in both DM(N , fb) and DM-MBR(N , Q, a, b, NL, NH). This and the fact that

the price meters defined in (2.3) and (2.4) are identical imply that the two mechanisms have

identical sets of remaining suppliers. Let N̂ denote the set of remaining suppliers. We use

induction on N̂ to show that the incremental awards made in DM(N , fb) and DM-MBR(N ,

Q, a, b, NL, NH) are identical. In both mechanisms, the buyer makes incremental awards at

time t = 0 and at time instants when the suppliers exit. Thus, it is sufficient to consider N̂
only at these time instants.

Consider the time instant t = 0 with the set N of suppliers. At this time instant, the

incremental award given to Supplier i ∈ N in DM(N , fb) is δ1
i = fb(N )− fb(N \ {i}). We

show that these awards are identical to those given in DM-MBR(N , Q, a, b, NL, NH) at that

time instant. Recall from Section 2.2 that L is the smallest value of n ∈ {NL, NL+1, . . . , NH}
such that (aQ)n ≤ Q ≤ (bQ)n. Also, K = b1−aL

b−a
c and β = 1 − aL − (b − a)K. By the

definitions of K and L, we have K ≤ L ≤ N . Consider the following cases:

• L = N

We analyze this case under the following three subcases:

◦ If K = L, then using the definition of fb in (A.3), we have fb(N ) = bQK and

fb(N \ {i}) = bQ(K − 1). Thus, δ1
i = fb(N ) − fb(N \ {i}) = bQ for all i ∈ N .

These awards are identical to those given in DM-MBR(N , Q, a, b, NL, NH) at

time t = 0 with N suppliers satisfying K = L = N .

◦ If K = L − 1, then using (A.3), we have fb(N ) = Q and fb(N \ {i}) = bQK.

Thus, δ1
i = fb(N )− fb(N \ {i}) = Q− bQK for all i ∈ N . Using the definition of

β and K + 1 = L, we obtain Q− bQK = aQ + βQ. Thus, δ1
i = aQ + βQ for all

i ∈ N . These awards are identical to those given in DM-MBR(N , Q, a, b, NL,

NH) at time t = 0 with N suppliers satisfying K + 1 = L = N .
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◦ If K < L − 1, then using (A.3), we have fb(N ) = Q and fb(N \ {i}) = Q −
aQ(L − L + 1) = Q − aQ. Thus, δ1

i = fb(N ) − fb(N \ {i}) = aQ for all i ∈ N .

These awards are identical to those given in DM-MBR(N , Q, a, b, NL, NH) at

time t = 0 with N suppliers satisfying K + 1 < L = N .

• L < N

Again, using (A.3), we have fb(N ) = fb(N\{i}) = Q. Thus, δ1
i = fb(N )−fb(N\{i}) =

0 for all i ∈ N . These awards are identical to those given in DM-MBR(N , Q, a, b,

NL, NH) at time t = 0 with N suppliers satisfying L < N .

This establishes our claim for the incremental awards made at time instant t = 0.

Consider a time instant t at which a supplier leaves in both mechanisms. Let N̂ be

the set of remaining suppliers at that time instant. Assume, as our induction hypothesis,

that the incremental awards made in DM(N , fb) and DM-MBR(N , Q, a, b, NL, NH) are

identical at all time epochs less than t. We use this to show that the incremental awards

made at time t in both mechanisms are identical. Let Qi be the sum of incremental awards

given to Supplier i ∈ N at all time epochs less than t. The incremental award given to

Supplier i ∈ N̂ in DM(N , fb) is δ1
i = f̂(N̂ )− f̂(N̂ \ {i}). Let δ2

i be the incremental award

made to Supplier i ∈ N̂ in DM-MBR(N , Q, a, b, NL, NH). We will complete our proof by

showing that δ1
i = δ2

i for all i ∈ N̂ . Consider the following cases:

• |N̂ | ≥ L + 1:

Recall that in DM-MBR(N , Q, a, b, NL, NH), the buyer makes no award as long as

there are more than L suppliers remaining in the auction. Moreover, by the induction

hypothesis, the incremental awards made in DM(N , fb) and DM-MBR(N , Q, a, b,

NL, NH) at time epochs less than t are identical. This and the assumption that

|N̂ | ≥ L + 1 imply that Qi = 0 for all i ∈ N . Moreover, since |N̂ \ {i}| ≥ L, we have

f̂(N̂ ) = f̂(N̂ \ {i}) = Q. Thus, δ1
i = 0 for all i ∈ N̂ . These awards are identical to

those given in DM-MBR(N , Q, a, b, NL, NH) at time t when |N̂ | ≥ L + 1.

• |N̂ | = L:

Again, we have Qi = 0 for all i ∈ N . Moreover, f̂(N̂ ) = Q and f̂(N̂ \ {i}) = Q− aQ

for all i ∈ N̂ . Thus, δ1
i = aQ for all i ∈ N̂ . Recall that in DM-MBR(N , Q, a, b, NL,

NH), the buyer makes an award of aQ units to each remaining supplier when there are

exactly L suppliers. Thus, δ2
i = aQ for all i ∈ N̂ .
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• K + 2 ≤ |N̂ | < L:

In this case, we have Qi = aQ for all i = 1, 2, . . . , L, and Qi = 0 for all i = L +

1, L + 2, . . . , N . Moreover, using the definition of K and the assumption that K + 2 ≤
|N̂ | < L, we have f̂(N̂ ) = Q − aQ(L − |N̂ |) − aQ|N̂ | = Q − aQL and f̂(N̂ \ {i}) =

Q − aQ(L − |N̂ \ {i}|) − aQ|N̂ \ {i}| = Q − aQL for all i ∈ N̂ . Thus, δ1
i = 0 for all

i ∈ N̂ . These awards are identical to those given in DM-MBR(N , Q, a, b, NL, NH) at

time t when K + 2 ≤ |N̂ | < L.

• |N̂ | = K + 1:

In this case, we have Qi = aQ for all i = 1, 2, . . . , L, and Qi = 0 for all i = L + 1, L +

2, . . . , N . Moreover, f̂(N̂ ) = Q− aQL and f̂(N̂ \ {i}) = bQ|N̂ \ {i}|− aQ|N̂ \ {i}| for

all i ∈ N̂ . Thus, δ1
i = Q − aQL − (b − a)Q|N̂ \ {i}| = βQ for all i ∈ N̂ . Recall that

in DM-MBR(N , Q, a, b, NL, NH), the buyer makes an incremental award of βQ units

to each remaining supplier when there are exactly K + 1 suppliers. Thus, δ2
i = βQ for

all i ∈ N̂ .

• |N̂ | = K:

In this case, we have Qi = aQ + βQ for all i = 1, 2, . . . , K + 1, Qi = aQ for all

i = K + 2, K + 3, . . . , L, and Qi = 0 for all i = L + 1, L + 2, . . . , N . Moreover,

f̂(N̂ ) = bQ|N̂ |− (aQ+βQ)|N̂ | and f̂(N̂ \{i}) = bQ|N̂ \{i}|− (aQ+βQ)|N̂ \{i}| for

all i ∈ N̂ . Thus, δ1
i = bQ− (aQ + βQ) for all i ∈ N̂ . Recall that in DM-MBR(N , Q,

a, b, NL, NH), the buyer makes an incremental award of bQ− (aQ+βQ) units to each

remaining supplier when there are exactly K suppliers. Thus, δ2
i = bQ − (aQ + βQ)

for all i ∈ N̂ .

• |N̂ | < K:

In this case, we have Qi = bQ for all i = 1, 2, . . . , K, QK+1 = aQ + βQ, Qi = aQ for

all i = K + 2, K + 3, . . . , L, and Qi = 0 for all i = L + 1, L + 2, . . . , N . Moreover,

f̂(N̂ ) = bQ|N̂ | − bQ|N̂ | = 0 and
∑N

i=1 Qi = Q. Since f̂(N̂ ) = 0, the mechanism

DM(N , fb) does not give any further awards; thus, δ1
i = 0 for all i ∈ N̂ . Recalling that

DM-MBR(N , Q, a, b, NL, NH) ends after procuring exactly Q units, we have δ2
i = 0

for all i ∈ N̂ .

We conclude that δ1
i = δ2

i for all i ∈ N̂ . This completes the proof of Claim 4-E. ¤

Claims 4-D and 4-E complete the proof of Claim 4. ¥



www.manaraa.com

69

Proof of Claim 5: Consider an arbitrary set N of suppliers, cost vector c, and a symmetric

polymatroid Pf . Let the suppliers be indexed such that ψ1(c1) ≤ ψ2(c2) ≤ . . . ≤ ψN(cN).

From the description of DMC(N , f) in Section 2.4, we know that the allocations given to

the suppliers in that mechanism are identical to those in DM(N , f). Moreover, the fact

that DM(N , f) results in an optimal solution to M-PM(f) (Theorem 3) and the observation

that the feasible region of M-PM(f) and M-PMC are identical for the set function f defined

in Section 2.4, imply that DMC(N , f) results in an allocation vector that is a feasible

solution to Problem MR-PMC(c). By Claim 4-C, this allocation vector is QC , where QC
i =

f({1, 2, . . . , i})− f({1, 2, . . . , i− 1}) = w(i)− w(i− 1), for all i ∈ N . We will complete the

proof of Claim 5 by showing that QC is an optimal solution to Problem MR-PMC(c). To

this end, we first prove two intermediate results in Claims 5-A and 5-B.

Consider an arbitrary Q′
N such that w(N)−w(N − 1) ≤ Q′

N ≤ w(1)−w(0). Define the

function w′ : N → R+ as follows: w′(k) = min{w(k), w(k + 1) − Q′
N} for any k ≤ N − 1.

Since w(·) is non-decreasing and concave, w′(·) is also non-decreasing and concave. Define

the set function f ′ as follows: f ′(S) = w′(|S|) for all subsets S ⊆ N \ {N}. The function

f ′ is submodular and non-decreasing; see Lovàsz (1983), Proposition 1.1. Let Pf ′ be the

polymatroid associated with f ′. Let q = (q1, q2, . . . , qN−1). Define the optimization problem

MRR-PMC(Q′
N ,c) as follows:

min
q

N−1∑
i=1

ψi(ci)H(qi)

s.t. q ∈ Pf ′ ,
N−1∑
i=1

qi = f ′(N \ {N}).
(MRR-PMC(Q′

N ,c))

Let q∗(Q′
N) be an optimal solution to Problem MRR-PMC(Q′

N ,c). Let

Q(Q′
N) = (q∗1(Q

′
N), q∗2(Q

′
N), . . . , q∗N−1(Q

′
N), Q′

N).

Claim 5-A: The allocation vector Q(Q′
N) is a feasible solution to MR-PMC(c).

Proof of Claim 5-A: We first note that
∑N

i=1 Qi(Q
′
N) = f(N ). This follows from the definition

of w′ and the assumption that Q′
N ≥ w(N) − w(N − 1). To show that Q(Q′

N) is a feasible

solution to MR-PMC(c), assume – to aim for a contradiction – that ∃Ŝ ⊂ N such that∑
j∈Ŝ Qj(Q

′
N) > f(Ŝ). We have the following cases:

• If Supplier N belongs to Ŝ, then
∑

j∈Ŝ\{N} Qj(Q
′
N) > f(Ŝ) − Q′

N ≥ min{f(Ŝ \
{N}), f(Ŝ) − Q′

N} = f ′(Ŝ \ {N}). Thus,
∑

j∈Ŝ\{N} q∗j (Q
′
N) > f ′(Ŝ \ {N}), a con-

tradiction to the fact that q∗(Q′
N) is an optimal solution to MRR-PMC(Q′

N ,c).
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• If Supplier N does not belong to Ŝ, then
∑

j∈Ŝ Qj(Q
′
N) =

∑
j∈Ŝ q∗j (Q

′
N) > f(Ŝ) ≥

min{f(Ŝ), f(Ŝ ∪ {N})−Q′
N} = f ′(Ŝ), again a contradiction to the fact that q∗(Q′

N)

is an optimal solution to MRR-PMC(Q′
N ,c).

Thus, Q(Q′
N) is a feasible solution to MR-PMC(c). ¤

Claim 5-B: Consider an optimal solution Q′ to problem MR-PMC(c). Then, Q(Q′
N) is also

an optimal solution to MR-PMC(c).

Proof of Claim 5-B: Since Q′ is a feasible solution to MR-PMC(c), we have w(N)−(N−1) ≤
Q′

N ≤ w(1) − w(0). The inequality Q′
N ≤ w(1) − w(0) follows directly from the definition

of the function w and the constraint Q′
N ≤ f({N}). To establish Q′

N ≥ w(N)− w(N − 1),

assume – to aim for a contradiction – that Q′
N < w(N) − w(N − 1). Since Q′ is feasible

to MR-PMC(c), we have
∑

i∈N\{N} Q′
i ≤ w(N − 1). Therefore,

∑N
i=1 Q′

i =
∑

i∈N\{N} Q′
i +

Q′
N < w(N − 1) + w(N) − w(N − 1) = w(N). This contradicts the feasibility constraint∑N
i=1 Qi = f(N ) in MR-PMC(c). Therefore, w(N) − w(N − 1) ≤ Q′

N ≤ w(1) − w(0).

As a consequence of Claim 5-A, Q(Q′
N) is feasible to MR-PMC(c). To show that it is

optimal, we compare the objective values in MR-PMC(c) corresponding to the solutions Q′

and Q(Q′
N). Using the definition of Q(Q′

N) and the fact that q∗(Q′
N) is optimal to MRR-

PMC(Q′
N ,c), we have

∑N
i=1 ψi(ci)H

(
Qi(Q

′
N)

)
=

∑N−1
i=1 ψi(ci)H

(
Qi(Q

′
N)

)
+ψN(cN)H

(
Q′

N

) ≤∑N−1
i=1 ψi(ci)H

(
Q′

i

)
+ψN(cN)H

(
Q′

N

)
. The optimality of Q(Q′

N) for MR-PMC(c) follows from

this inequality and the fact that Q′ is an optimal solution to MR-PMC(c). ¤

We now use Claim 5-B to show that the allocation vector QC is an optimal solution to

MR-PMC(c). For this, we use induction on the number of suppliers N . For the base case of

a single supplier (i.e., N = 1), it is trivial to see that the solution QC
1 = w(1) is optimal to

MR-PMC(c).

Consider now the case when there are N ≥ 2 suppliers. Let Q′ be an optimal solution

to MR-PMC(c). As shown in the proof of Claim 5-B, we have w(N) − w(N − 1) ≤ Q′
N ≤

w(1)−w(0). Moreover, we know that Q(Q′
N) = (q∗1(Q

′
N), q∗2(Q

′
N), . . . , q∗N−1(Q

′
N), Q′

N) is also

an optimal solution to MR-PMC(c). Using our induction hypothesis, the solution q∗(Q′
N)

to Problem MRR-PMC(Q′
N ,c) can be obtained as follows: q∗i (Q

′
N) = f ′({1, 2, . . . , i}) −

f ′({1, 2, . . . , i− 1}) = w′(i)− w′(i− 1) for all i = 1, 2, . . . , N − 1.

Define an index 2 ≤ k ≤ N such that w(k) − w(k − 1) ≤ Q′
N ≤ w(k − 1) − w(k − 2).

If there are multiple indices satisfying this condition, define k to be the highest such index.

Using the definition of the index k and the fact that w(·) is concave, we have w′(i) = w(i)

for all i ≤ k−2 and w′(i) = w(i+1)−Q′
N for all i ≥ k−1. As a result, q∗i (Q

′
N) is as follows:
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q∗i (Q
′
N) =





w(i)− w(i− 1), i ≤ k − 2,

w(k)−Q′
N − w(k − 2), i = k − 1,

w(i + 1)− w(i), k ≤ i ≤ N − 1.

(A.4)

Let ∆ denote the difference in the objective values in MR-PMC(c) corresponding to the

solutions Q(Q′
N) and QC . Using (A.4), this difference can be written as:

∆ =
N∑

i=1

ψi(ci)H
(
Qi(Q

′
N)

)
−

N∑
i=1

ψi(ci)H
(
QC

i

)
,

= ψk−1(ck−1)
[
H

(
w(k)−Q′

N − w(k − 2)
)
−H

(
w(k − 1)− w(k − 2)

)]
+

N−1∑

i=k

ψi(ci)
[
H

(
w(i + 1)− w(i)

)
−H

(
w(i)− w(i− 1)

)]
+

ψN(cN)
[
H

(
Q′

N

)
−H

(
w(N)− w(N − 1)

)]
,

≥ ψk−1(ck−1)

{[
H

(
w(k)−Q′

N − w(k − 2)
)
−H

(
w(k − 1)− w(k − 2)

)]
+

N−1∑

i=k

[
H

(
w(i + 1)− w(i)

)
−H

(
w(i)− w(i− 1)

)]
+

[
H

(
Q′

N

)
−H

(
w(N)− w(N − 1)

)]}
,

= ψk−1(ck−1)

{
H

(
w(k)−Q′

N − w(k − 2)
)
−H

(
w(k − 1)− w(k − 2)

)
−

H
(
w(k)− w(k − 1)

)
+ H

(
Q′

N

)}
,

= ψk−1(ck−1)

{[
H

(
Q′

N

)
−H

(
w(k)− w(k − 1)

)]
−

[
H

(
w(k − 1)− w(k − 2)

)
−H

(
w(k)−Q′

N − w(k − 2)
)]}

,

≥ 0.

The last inequality follows from our assumption that H(·) is concave and the fact that

Q′
N ≤ w(k− 1)−w(k− 2). This inequality and the facts that QC is feasible to MR-PMC(c)

and Q(Q′
N) is optimal to MR-PMC(c), imply that QC is optimal to MR-PMC(c). This

completes the proof of Claim 5. ¥
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APPENDIX B

PROOFS FOR CHAPTER 4

Proof of Lemma 2: The proof that ft,T (x, y, w) is increasing in x is trivial since, for all

x′ ≥ x, we have

ft,T (x′, y, w)− ft,T (x, y, w) ≥ w(x′ − x) ≥ 0.

This is because, when we have x′ units at the beginning of period t, we can follow the optimal

policy as if we have only x units and sell the excess of (x′ − x) units to A in period t.

The proof of concavity is by induction. By definition, fT+1,T (x, y, w) = 0 for all (x, y, w).

Now, we proceed inductively. Assume that for some t ∈ {1, 2, . . . , T}, ft+1,T (x, y, w) is a

concave function of x for all (y, w). It only remains to show that ft,T (x, y, w) is concave

with respect to x. To do this, let us examine the definition of ft,T (x, y, w) in (4.1). Since

ft+1,T (x, y, w) is concave in x and (x− qG − qA) is a linear function of (x, qG, qA), we know

that ft+1,T (x − qG − qA, Yt+1,Wt+1) is jointly concave in (x, qG, qA). The expectation and

summation operations preserve concavity. Thus,

SqG + wqA − h(x− qG − qA) + αE
[
ft+1,T (x− qG − qA, Yt+1,Wt+1)

]

is also jointly concave in (x, qG, qA). Then, the desired concavity of ft,T (x, y, w) in x follows

immediately from (4.1) and a standard result on the preservation of concavity by maximiza-

tion (see Theorem A.4, Porteus 2002).

To prove the last statement, it is sufficient to show that for all x′ ≤ x,

ft,T (x, y, w)− ft,T (x′, y, w) ≤ S(x− x′)

which is equivalent to the statement that

ft,T (x′, y, w) ≥ ft,T (x, y, w)− S(x− x′). (B.1)

To see this, we consider two systems, one starting from the state (x, y, w) in period t while

another starts from the state (x′, y, w) in that same period. Both systems experience the

same capacity and agent price realizations in all periods. Let policy π achieve the optimal

expected profit ft,T (x, y, w). We now define a feasible (but not necessarily optimal) policy

72
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π′ operated on the system which starts from the state (x′, y, w). For every realization of

capacities and agent prices in periods t + 1, t + 2, . . . , T , policy π′ does not sell any unit to

G and to A until policy π has sold (x − x′) units; at that instant, both systems have the

same amount of inventory – that is both policies couple; from then on, policy π′ mimics π

in the sense that it uses the same selling quantities as π. It should now be clear that for

every realization of capacities and agent prices, the only difference in the profits obtained by

π and π′ is due to the profit associated with the (x − x′) units sold by π before π′ couples

with π. Since the agent’s price is less than S with probability 1 in every period, it is obvious

that this difference can be at most S(x− x′). Thus, the expected profit under π′ from state

(x′, y, w) in period t exceeds ft,T (x, y, w)−S(x−x′), which implies the desired result in (B.1)

since ft,T (x′, y, w) is the optimal expected profit from the state (x′, y, w) in period t. ¥

Proof of Lemma 3: Let Yt = y, Wt = w and xt = x. Consider the maximization problem

in (4.1). Let q = qG + qA. For any fixed q, the derivative of the objective with respect to

qG can be computed using the relation qA = q − qG. This derivative equals S − w which is

strictly positive by our assumption on the agent’s price. This implies that it is optimal to

have qA > 0 only if qG hits the upper bound imposed by the procurement capacity, y; that

is, qG = y and x > y. In other words, every optimal solution falls into one (or both) of the

following two cases: (a) qG = y or (b) qA = 0. The desired result is automatically satisfied

in case (a).

To establish the desired result in case (b), we need to show that, in this case, qG =

min(x, y). To show this, let us consider the maximization problem in (4.1) with the additional

constraint that qA = 0 (i.e., solutions corresponding to case (b)). That is, consider

max
qG

SqG − h(x− qG) + αE
[
ft+1,T (x− qG, Yt+1,Wt+1)

]

s.t. 0 ≤ qG ≤ y, qG ≤ x .

Differentiating the objective function above with respect to qG and using the fact that the

derivative of ft+1,T with respect to its first argument is smaller than S (from Lemma 2), we

find that the objective is a strictly increasing function of qG. Therefore, the optimal solution

is qG = min(x, y), thus proving the desired result. ¥

Proof of Theorem 8: By definition, P̂∞ is an infinite-horizon version of PT in which the

agent’s price is constant. Moreover, the government’s support price and the distributions of

the government’s procurement capacities are also stationary. Thus, standard DP convergence
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arguments (see Hernandez-Lerma and Lassere 1996 for details) along with the optimality of

a sell-down-to policy for PT (Theorem 7) can be used to show the optimality of a constant

sell-down-to policy for P̂∞. Let us now turn our attention to the issue of determining the

optimal constant sell-down-to threshold.

First, observe that, starting from period 2 onwards, all constant sell-down-to policies are

identical. This is because every policy in this class sells the maximum possible quantity to

G in every period and zero to A in every period beyond the first. Thus, when the policy

πCS(v) is used, the expected present value in period 2 of the profits received by F over

periods 2, 3, . . ., depends on v only through the inventory on hand at the end of period 1.

Let Ĝ(z) be this value when the inventory on hand at the end of period 1 is z. Then, we

have

Ĝ(z) = E

[ ∞∑
t=2

αt−2S min

((
z − Ỹt−1

)+

, Yt

)
−

∞∑
t=2

αt−2
(
z − Ỹt

)+

h

]
. (B.2)

Let V̂∞(Q; v; y) be the expected discounted sum of profits in P̂∞ when we start from the

state (Q, y) and the policy πCS(v) is used. That is,

V̂∞(Q; v; y) = SQ if y ≥ Q,

= Sy + w(Q− y − v)+ − h min(Q− y, v) + αĜ(min(Q− y, v)) if y ≤ Q.

To find the optimal value of v (i.e., arg maxv≥0 V̂∞(Q; v; y)), we observe that v has no effect

on the profit if y ≥ Q because the entire inventory is sold to G in period 1. Thus, it only

remains to study the optimal value of v when y < Q. That is,

max
v≥0

Ĥ(Q− y, v) , where Ĥ(x, v) := w(x− v)+ − h min(x, v) + αĜ(min(x, v)). (B.3)

To prove the desired result that v̂ is the optimal constant sell-down-to threshold, we see from

(B.3) that it suffices to show that v̂ is a maximizer of Ĥ(x, v) for any x ≥ 0. Now, notice

that for any given x ≥ 0, the function Ĥ(x, v) is constant with respect to v for all v ≥ x.

Thus, to maximize this function, it is sufficient to consider v ∈ [0, x], in which case we have

Ĥ(x, v) = w(x− v)− hv + αĜ(v). Therefore, we complete our proof by showing that Ĝ(v)

is a concave function and v̂ maximizes −(w + h)v + αĜ(v).

Using (B.2) and standard manipulations, we can rewrite Ĝ(v) as follows:

Ĝ(v) =
∞∑

t=2

αt−2 ((1− α)S + h)E
[
min

(
v, Ỹt

)]
− vh

1− α
. (B.4)
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Since min(v, Ỹt) is a concave function of v for every realization of Ỹt and concavity is preserved

under expectation and addition, we see from (B.4) that Ĝ(v) is a concave function. In fact,

with our assumption that the density function φ is strictly positive, we can show that Ĝ(v)

is strictly concave. Thus, −(w + h)v + αĜ(v) is also strictly concave. Differentiating Ĝ(v)

using (B.4), we see that

d

dv
[−(w + h)v + αĜ(v)] = −(w + h) +

∞∑
t=2

αt−1 ((1− α)S + h) p(Ŷt > v)− αh

1− α
.

With some algebra, this equation can be rewritten as

d

dv
[−(w + h)v + αĜ(v)] = −w +

∞∑
t=2

(
αt−1S − 1− αt−1

1− α
h

)
P

(
Ỹt−1 ≤ v < Ỹt

)
.

From the definition of v̂, we see that this derivative vanishes at v = v̂. Therefore, v̂ maximizes

the function −(w + h)v + αĜ(v); in fact, it is the unique maximizer since that function is

strictly concave. This completes the proof. ¥

Proof of Theorem 9: Recall from the proof of Theorem 8 that v̂ maximizes −(w + h)v +

αĜ(v). Using the form of Ĝ(v) derived in (B.4), the optimal threshold v̂ can also be obtained

by solving
∞∑

t=2

(1− α)αt−1P (Ỹt > v) =
w(1− α) + h

S(1− α) + h
.

Using the fact that P (Ỹt > v) is decreasing in v, it is evident from the above equation that

v̂ is increasing in S and decreasing in w and h.

The proof of the claim that v̂ is increasing in α is quite involved. We first consider a

finite-horizon version (with T periods) of P̂∞ – we refer to this as Problem P̂T . It is identical

to Problem PT except that the agent’s price Wt in any period t is deterministic and equal

to w. Thus, we can apply Theorem 7 to conclude that there exist constants {v̂t,T} such

that the following policy is optimal for P̂T : Sell the maximum possible quantity to G in

every period and sell to A to bring the inventory down to the level v̂t,T (if inventory exceeds

that level) in every period t. Moreover, we know from the proof of Theorem 8 (namely,

the dynamic programming convergence arguments referred to there and the fact that v̂ is

the unique maximizer of the profit with respect to the constant sell-down-to level) that

v̂ = limT→∞ v̂1,T . Thus, to show that v̂ is increasing in α, it suffices to show that v̂t,T is

increasing in α for every T and every t ≤ T . To show this, we use the analysis in Section 4.3.2

to conclude that

v̂t,T = argmaxv≥0 − wv − hv + αE[f̂t+1,T (v, Yt+1)],
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where f̂t,T (x, y) = Sx if y ≥ x,

= Sy + w(x− y − v̂t,T )+ − h min(x− y, v̂t,T )

+ αE
[
f̂t+1,T (min(x− y, v̂t,T ), Yt+1)

]
if y ≤ x,

and, f̂T+1,T (x, y) = 0 for all x ≥ 0 and y ∈ Y .

From the definition of v̂t,T above and standard arguments justifying the interchange of the

expectation and derivative operations, we know that

αE
[

∂

∂v

(
f̂t+1,T (v, Yt+1)

) ∣∣∣v = v̂t,T

]
= w + h.

Observe that f̂t+1,T (v, y) is concave in v for all y ∈ Y and that ∂
∂v

f̂t+1,T (v, y) ≥ 0 for all v ≥ 0

and for all y ∈ Y (Lemma 2). If we show that ∂
∂x

f̂t+1,T (x, y) is increasing in α for all x ≥ 0

and for all y ∈ Y , then this will establish that v̂t,T is increasing in α. Thus, we proceed to

show inductively that ∂
∂x

f̂t,T (x, y) is increasing in α for all (x, t, y).

Since f̂T+1,T (x, y) = 0 for all α, x and y, we assume that ∂
∂x

f̂t+1,T (x, y) is increasing in

α for all (x, y) and for some t ≤ T . It only remains to use this to prove the claim that
∂
∂x

f̂t,T (x, y) is also increasing in α for all (x, y).

From the definition of f̂t,T (x, y) above, we see that when y ≥ x, ∂
∂x

f̂t,T (x, y) = S which

is trivially increasing in α. When y < x, the proof of the claim is straightforward but is a

cumbersome exercise whose main ideas we sketch and details we omit. Consider two discount

factors α2 > α1. In what follows, we use the discount factor as an argument, where necessary.

From the inductive assumption that ∂
∂x

f̂t+1,T (x, y, α) is increasing in α and the definition of

v̂t,T (α), we see that v̂t,T (α2) ≥ v̂t,T (α1). Consider the three ranges, x ∈ [y, y + v̂t,T (α1)],

x ∈ [y + v̂t,T (α1), y + v̂t,T (α2)] and x ∈ [y + v̂t,T (α2),∞). In each of these ranges, it can be

shown that ∂
∂x

f̂t,T (x, y, α2) ≥ ∂
∂x

f̂t,T (x, y, α1). To demonstrate the inequality in the middle

range, we use the following fact: From the definition of v̂t,T , we know that, for every Yt+1 ∈ Y ,

the inequality αE
[

∂
∂x

f̂t+1,T (x− y, Yt+1)
]
≥ w + h holds when x− y < v̂t,T . ¥

Proof of Theorem 10: Similar to the proof of Theorem 9, we use the convergence of

finite-horizon dynamic programs to infinite-horizon dynamic programs. Let f̂A
t,T (x, y) and

f̂B
t,T (x, y) denote the optimal profit functions in Problem P̂T corresponding to the sequences

{Y A
t } and {Y B

t }, respectively. Using standard DP convergence arguments, we know that

f̂A
∞(Q, y) = limT→∞ f̂A

1,T (Q, y) and f̂B
∞(Q, y) = limT→∞ f̂B

1,T (Q, y). Then, to show the first

result, it suffices to show the claim that, for all T , all t ≤ T , and all (x, y), f̂A
t,T (x, y) ≥
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f̂B
t,T (x, y). Notice from the definitions of f̂A

t,T (x, y) and f̂B
t,T (x, y) that they can be written as

follows: For all t ≤ T ,

f̂A
t,T (x, y) = max

qG,qA
SqG + wqA − h(x− qG − qA) + αE

[
f̂A

t+1,T (x− qG − qA, Y A
t+1)

]

s.t. qA ≥ 0, 0 ≤ qG ≤ y, qA + qG ≤ x , and

f̂B
t,T (x, y) = max

qG,qA
SqG + wqA − h(x− qG − qA) + αE

[
f̂B

t+1,T (x− qG − qA, Y B
t+1)

]

s.t. qA ≥ 0, 0 ≤ qG ≤ y, qA + qG ≤ x ,

where f̂A
T+1,T (x, y) = f̂B

T+1,T (x, y) = 0 for all (x, y). Standard arguments involving the

preservation of concavity under expectations, addition and maximization can be used to

show that f̂A
t,T (x, y) and f̂B

t,T (x, y) are jointly concave in (x, y). Let us now assume inductively

that f̂A
t+1,T (x, y) ≥ f̂B

t+1,T (x, y) for some t ≤ T and all (x, y), since this statement is trivially

true for t = T . Then, we have

E[f̂A
t+1,T (x− qG − qA, Y A

t+1)] ≥ E[f̂B
t+1,T (x− qG − qA, Y A

t+1)] ≥ E[f̂B
t+1,T (x− qG − qA, Y B

t+1)],

where the first inequality follows from the induction hypothesis and the second follows from

the concavity of f̂B
t+1,T with respect to its second argument and the assumption that Y A

t+1 ≤cx

Y B
t+1. Thus, E[f̂A

t+1,T (x− qG − qA, Y A
t+1)] ≥ E[f̂B

t+1,T (x− qG − qA, Y B
t+1)]; using this in the DP

recursion above immediately implies the claim that f̂A
t,T (x, y) ≥ f̂B

t,T (x, y) for all (t, T, x, y).

This completes the proof of the first result stated in the theorem.

We proceed to prove the second result. Since f̂B
t,T (x, y) is jointly concave in (x, y), so is

the limiting function f̂B
∞(x, y). We use the first result, the concavity of f̂B

∞(x, y) with respect

to (x, y), and the convex ordering assumption as follows: E[f̂A
∞(Q, Y A

1 )] ≥ E[f̂B
∞(Q, Y A

1 )] ≥
E[f̂B

∞(Q, Y B
1 )], which is the desired result. ¥

Proof of Theorem 11: Assume that Y1 = y and x1 = Q in both PT and P̂∞. Assume

further that W1 = w in PT . Since Wt ≤ w for every t, the expected total discounted profit

of F in P̂∞ is no smaller than the expected total discounted profit of F in PT for every

feasible policy. Thus, f̂∞(Q, y) ≥ f1,T (Q, y, w). We know from Theorem 8 that πCS(v̂) is the

optimal policy in P̂∞. Let x̂t, q̂G
t and q̂A

t denote the inventory at the beginning of period t,

the quantity sold to G in period t and the quantity sold to A in period t, respectively, under

this policy. Then, from the optimality of this policy in P̂∞ and the feasibility of this policy

in PT , we have

∞∑
t=1

αt−1E[Sq̂G
t + wq̂A

t − hx̂t+1] = f̂∞(Q, y) ≥ f1,T (Q, y, w)
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≥
T∑

t=1

αt−1E[Sq̂G
t + Wtq̂

A
t − hx̂t+1].

Therefore,

f̂∞(Q, y)− f1,T (Q, y, w)

f1,T (Q, y, w)
≤

(
w − w

w

)
(Q− y − v̂)+

Q
+

1

wQ

∞∑
t=T+1

αt−1E[Sq̂G
t + wq̂A

t − hx̂t+1]

≤ w − w

w
+

1

Q

(
αT S

w

)
E

[(
min{(Q− y)+, v̂} − ỸT

)+
]

, (B.5)

where the inequality in (B.5) is due to the facts that w ≥ w, q̂A
t = 0 for all t ≥ 2,∑∞

t=T+1 αt−1q̂G
t ≤ αT

∑∞
t=T+1 q̂G

t = αT (min{(Q − y)+, v̂} − ỸT )+, and hx̂t+1 ≥ 0 for all

t.

Consider the following cases:

• Q ≥ v̂: In this case, we have

1

Q
E

[(
min{(Q− y)+, v̂} − ỸT

)+
]
≤ E[(v̂ − ỸT )+]

v̂
.

• Q < v̂: In this case, we have

1

Q
E

[(
min{(Q− y)+, v̂} − ỸT

)+
]

=
1

Q
E

[(
(Q− y)+ − ỸT

)+
]

≤ 1

Q
E[(Q− ỸT )+] = E[(1− ỸT /Q)+] ≤ E[(1− ỸT /v̂)+] =

E[(v̂ − ỸT )+]

v̂
.

Next, we use the distribution-free newsvendor bounds of Gallego and Moon (1993) to obtain

the following inequality:

E
[(

v̂ − ỸT

)+
]
≤

[
(T − 1)σ2 + (v̂ − (T − 1)µ)2]1/2

+ [v̂ − (T − 1)µ]

2
.

The desired result follows by using this inequality and the above two cases in (B.5). ¥

Proof of Theorem 12: For brevity, we avoid giving a detailed proof and only highlight

the main ideas.



www.manaraa.com

79

1. Recall from Section 4.4.2 that the threshold v̂ is the solution to the following equation:

∞∑
t=2

(1− α)αt−1P (Ỹt > v) =
w(1− α) + h

S(1− α) + h
. (B.6)

Using the fact that the convolution of independently distributed exponential random

variables follows an Erlang distribution, the left-hand-side of (B.6) can be expressed

as
∞∑

t=2

(1− α)αt−1p(Ỹt > v) =
∞∑

t=2

(1− α)αt−1

t−2∑
n=0

(λv)n

n!
e−λv.

Using standard algebraic manipulations, this equation becomes

∞∑
t=2

(1− α)αt−1p(Ỹt > v) = αe−(1−α)λv, (B.7)

which, along with (B.6), gives (4.6).

2. Using the identity A−min(A,B) = (A−B)+, the expected amount of distressed sales

is

EY1 [(Q− Y1 − v̂)+] = (Q− v̂)+ − EY1 [min{(Q− v̂)+, Y1}] = (Q− v̂)+ − 1− e−λ(Q−v̂)+

λ
.

3. When Q < v̂, the desired result in (4.7) follows directly from the definition of Ĝ(·).
Consider now the case Q ≥ v̂. Let U(x) = −(w + h)x + αĜ(x) ∀ x. Then, we have

EY1 [f̂∞(Q, Y1)]

= EY1 [S min{Q, Y1}+ (Q− Y1 − v̂)+w − h min{(Q− Y1)
+, v̂} +

αĜ(min{(Q− Y1)
+, v̂})]

= EY1 [S min{Q, Y1}+ (Q− Y1)
+w + U(min{(Q− Y1)

+, v̂})]

=
S

λ
(1− e−λQ) + wQ− w

λ
(1− e−λQ) + EY1

[
U(min{(Q− Y1)

+, v̂})] . (B.8)

Recall from (B.4) that Ĝ(x) = [(1−α)S+h]
∑∞

t=2 αt−2E[min(x, Ỹt)]−hx/(1−α), which

equals [(1 − α)S + h]
∫ x

0
[
∑∞

t=2 αt−2p(Ỹt > z)]dz − hx/(1 − α). Using this and (B.7),

we obtain the expression for Ĝ(x) in (4.9). Using (4.9), we obtain the closed-form

expression for EY1 [U(min{(Q−Y1)
+, v̂})], which together with (B.8), gives the desired

result in (4.8). ¥
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Proof of Theorem 13: The proof follows directly by the definition of L(Q), Theorem 10,

and the fact that the exponential distribution with mean 1/λ is higher in the convex order

than any NBUE distribution with the same mean (Theorem 3.A.55, Shaked and Shanthiku-

mar 2007). ¥
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